Max Sum of Max-K-sub-sequence(单调队列)
Posted handsomecui
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Max Sum of Max-K-sub-sequence(单调队列)相关的知识,希望对你有一定的参考价值。
Max Sum of Max-K-sub-sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7034 Accepted Submission(s): 2589
Problem Description
Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
Sample Input
4
6 3
6 -1 2 -6 5 -5
6 4
6 -1 2 -6 5 -5
6 3
-1 2 -6 5 -5 6
6 6
-1 -1 -1 -1 -1 -1
Sample Output
7 1 3
7 1 3
7 6 2
-1 1 1
Author
shǎ崽@HDU
Source
Recommend
题解:让找距离小于等于k的连续一段区间的值最大,数据是环状的;
要用单调队列;本来想着贪心,果断wa,单调队列注意,找到前缀和,现在只需要根据r找l,l在单调队列里找,单调队列要保证从小到大。这样就保证了队头是最小值,注意单调队列放的是i(初态),所以要放i - 1;这点错了好久。当前的位置是终态,也就是i
代码:
#include<iostream> #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> using namespace std; const int MAXN = 1000100; int num[MAXN << 1]; int Q[MAXN << 1]; int sum[MAXN << 1]; int main(){ int T, n, k; scanf("%d", &T); while(T--){ scanf("%d%d", &n, &k); int head = 0, tail = -1; sum[0] = 0; for(int i = 1; i <= n; i++){ scanf("%d", num + i); sum[i] = sum[i - 1] + num[i]; } for(int i = n + 1; i <= n + k; i++){ num[i] = num[i - n]; sum[i] = sum [i - 1] + num[i]; } int ans = -0x3f3f3f3f, L = 0, R = 0; for(int i = 1; i < n + k; i++){ while(head <= tail && sum[i - 1] < sum[Q[tail]]) tail--; while(head <= tail && i - Q[head]> k)head++; Q[++tail] = i - 1; if(sum[i] - sum[Q[head]] > ans){ ans = sum[i] - sum[Q[head]]; L = Q[head] + 1; R = i; } } printf("%d %d %d\n", ans, L>n?L-n:L, R>n?R-n:R); } return 0; }
贪心wa;由于规定了最大长度,这样贪心就不行了;
wa代码 :
#include<iostream> #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> using namespace std; const int MAXN = 1000010; int num[MAXN]; int main(){ int T; int n, k; scanf("%d", &T); while(T--){ scanf("%d%d", &n, &k); for(int i =0 ; i < n; i++){ scanf("%d", num + i); } for(int i = n; i < 2 * n; i++) num[i] = num[i - n]; int l = 0, r = 0, ans = -0x3f3f3f3f, cur = 0, L = 0, R = 0, cnt = 0; for(int i = 0; i < 2 * n; i++){ cur += num[i]; cnt++; if(cur <= num[i] || cnt > k){ l = i; cur = num[i]; cnt = 1; } r = i; if(cur > ans){ L = l; R = r; ans = cur; } } printf("%d %d %d\n", ans, L + 1 > n ? L + 1 - n: L + 1, R + 1 > n ? R + 1 - n: R + 1); } return 0; }
以上是关于Max Sum of Max-K-sub-sequence(单调队列)的主要内容,如果未能解决你的问题,请参考以下文章
Max Sum of Max-K-sub-sequence(单调队列)
Leetcode: Max Sum of Rectangle No Larger Than K
[LeetCode] Max Sum of Rectangle No Larger Than K