「关于张博航提到的筛法的理解」——一种处理关于$p$成多项式的数论函数筛法

Posted Troy Ricardo

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了「关于张博航提到的筛法的理解」——一种处理关于$p$成多项式的数论函数筛法相关的知识,希望对你有一定的参考价值。

  张博航原知乎网址

  张博航原博客网址

引入:

  给一个完全积性函数$f$,求其前缀和

  $$S(n)=\\sum_{i=1}^nf(i)$$

初步思考:

  考虑由于所求函数为完全积性函数,我们很容易用一个线性筛在$O(n)$的时间负责度内解决问题。

  但是往往这类问题要求更加优秀的时间负责度,那么线筛便不能满足我们的需要,我们需要更加优秀的做法。

  我们考虑一种最基础的筛法:埃拉托斯特尼筛法。

  在这种筛法的思路中,我们只需要枚举$\\sqrt n$以内的质数,那么我们是否可以引入这种想法呢?

进一步思考:

  我们考虑将$S(n)=\\sum_{i=1}^n f(i)$换成与质数有关的表达形式。

  我们设$\\tau(x) = x的最大质因子$。

  那么

  $$S(n) = \\sum _{i=2}^n\\sum_{\\tau(i)<p,i*p<=n}f(ip) + \\sum_{i=2}^nf(i)[\\tau^2(i)|i] + f(1) + \\sum_{p=2}^n f(p)$$

  $$\\because \\forall a,b\\; f(ab)=f(a)f(b)$$

  $$\\therefore S(n)=\\sum_{i=2}^nf(i)\\sum_{\\tau(i)<p,ip<=n,p==\\tau (p)}f(p)+\\sum_{i=2}^nf(i)[\\tau^2(i)|i]+f(1)+\\sum_{p=2}^nf(p)$$

  我们来看这个式子。

  我们发现前两部分枚举的$i$所含质数$p$必然$p<=\\sqrt n$。

  那么我们使用DFS来枚举这些$i$会发现枚举量为:$$n-\\sum_{i=\\sqrt n+1,i=\\tau(i)}^n \\lfloor \\frac{n}{i} \\rfloor$$

  这个式子我并不会算……

  但是通过张博航的博客,这个式子的结果是约等为$\\frac{n^{\\frac{3}{4}}}{ln n}$存在一定的常数。

思考算法设计:

  那么问题就变成了如何去求$\\sum_{\\tau(i)<p,ip<=n}f(p)$以及$\\sum_{p=2,p=\\tau(p)}f(p)$。

  我们发现后者其实是可以看作于前者是一类的。

  那么设$S\'(n)=\\sum_{p=2,p=\\tau(p)}f(p)$,即上式为$S\'(\\frac{n}{i})-S\'(\\tau(i))$来表示的。

  由于除法分块我们可以知道$\\lfloor \\frac{n}{i} \\rfloor$取值仅有$\\sqrt n$级别个,同时$\\tau(i) <=\\sqrt n$。

  那么我们设$$a_i = S\'(i),b_i=S\'(\\frac{n}{i}),i\\leqslant \\sqrt n$$

  那么考虑如何求出$S\'$。

  我们先将所有数都看做质数,那么此后我们从小到大枚举一个每个小于$\\sqrt n$的质数$p$,那么

  $$S\'(i)=S\'(i)-f(p)(S\'(\\frac{i}{p})-S\'(p-1))$$

  考虑用数学归纳法证明:

  首先当$p==2$时,此式显然得到的是去掉所有含“2”因子的合数。

  那么设此式在之前质数中都是正确的,此时枚举到了$p$。同时设$\\zeta i = i的最小质因数$

  那么我们考虑此时

    $S\'(x)=\\sum_{i=2,i=\\tau(p),i<p}f(p) + \\sum_{i=p}^x [\\zeta(i)>=p]f(i)$

  那么

    $f(p)(S\'(\\frac{i}{p})-S\'(p-1) )= \\sum_{j=p}^{\\frac{i}{p}} [\\zeta(i)>=p] f(i*p)$

  即此时我们给$S\'(i)$删去了所含质因数均大于等于$p$的合数。故上式当处理到$\\sqrt n$时是正确的。

  

  我们再考虑如何求出$a,b$数组。

  显然我们要从小到大枚举每个质数,再从大到小枚举每一个有用的$i$。然后考虑:

  1)  若$i>\\sqrt n$那么其对应位置一定在$b$数组出现过。

  2)  若$\\frac{i}{p}>sqrt n$那么其对应位置也必然在$b$中出现,这是由于$i$是由$\\frac {n} {j}$得到的。

   那么$\\frac{i}{p}$就等价于$\\lfloor \\frac{ \\frac{n}{j} }{p} \\rfloor= \\frac {n} {jp}$显然$jp<=\\sqrt n$ 那么其此时$\\frac{i}{p}$一定在b中出现过。

  3) 若$i<=\\sqrt n$ 那么其必然出现在$a$中,$\\frac{i}{p}$同理。

  也就是说对于用每个$p$来更新$a,b$需要且仅需要$a,b$数组。

  考虑求$a,b$的时间复杂度约为:

  $ \\sum_{i=2,i=\\tau i} (2\\sqrt n - i^2) $。

  这个东西,应该约为$\\frac {2n^\\frac{3}{4}} {3ln(\\sqrt n)}$。考虑枚举第一部分$i$具有常数。这两部分应该是很接近的。

算法使用范围:

  假设我们可以将一个函数写成关于$p$的$k$阶多项式形式的话,我们就可以利用上面描述的筛法,在$k\\frac{n^\\frac{3}{4}}{lnn}$时间内得到答案。

======update======

  这个似乎和min_25筛很像?

以上是关于「关于张博航提到的筛法的理解」——一种处理关于$p$成多项式的数论函数筛法的主要内容,如果未能解决你的问题,请参考以下文章

关于筛法

Min_25筛

线性筛法

Eratosthense筛法

线性(欧拉)筛&欧拉函数

质数的筛法