132. Palindrome Partitioning II
Posted wz30
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了132. Palindrome Partitioning II相关的知识,希望对你有一定的参考价值。
dp or memo recursion
1. dp formulation
2. ispalindrome based on the nature structure
class Solution { //optimal problem dp: how to divide into differern subsets //dp = min ();//how many cuts, dp[i][j] dp[i-1][j+1] //or mem recursive public int minCut(String s) { int n = s.length(); if(n==0) return 0; boolean[][] dp = new boolean[n+1][n+1];//0 to n-1 //preprocessing the string with dp[i][j] //check the [] //given fixed steps, check the palindrome* for(int step = 0; step < n;step++){ for(int i = 0; i+step<n; i++){ if(s.charAt(i)==s.charAt(i+step)){ if(step <=2 || dp[i+1][i+step-1]){ dp[i][i+step] = true; dp[i+step][i] = true; } } } } //cut[i][j] : minimal cut from i to j //initialize int[][] cut = new int[n+1][n+1]; for(int i = 0 ;i < n;i++){ for(int j = i; j<n; j++){ cut[i][j] = j-i; } } //cut[0][j] = min(cut[0][j], cut[0][i-1] +1(if dp[i][j]==true)) for(int j = 0; j<n; j++){ for(int i = 1; i<=j; i++){ if(dp[0][j]){ cut[0][j] = 0; }else if(dp[i][j]){ cut[0][j]= Math.min(cut[0][j], cut[0][i-1]+1); } } } return cut[0][n-1]; } }
以上是关于132. Palindrome Partitioning II的主要内容,如果未能解决你的问题,请参考以下文章
131. 132. Palindrome Partitioning *HARD* -- 分割回文字符串
132. Palindrome Partitioning II
leetcode 132 Palindrome Partitioning II
lintcode-medium-Palindrome Partition II