tensorflow显存管理
Posted 张乐乐章
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tensorflow显存管理相关的知识,希望对你有一定的参考价值。
在运行上面的blog的Tensorflow小程序的时候程序我们会遇到一个问题,当然这个问题不影响我们实际的结果计算,但是会给同样使用这台计算机的人带来麻烦,程序会自动调用所有能调用到的资源,并且全占满,在自己的PC上没问题,但是在服务器上,问题就很大,因为一旦你运行程序,占满显存别人就不能再用了,解决方法是我们通常是给程序运行指定一块GPU,然后限制其使用比例:
1 import tensorflow as tf 2 import os 3 os.environ["CUDA_VISIBLE_DEVICES"] = ‘0‘ #指定第一块GPU可用 4 config = tf.ConfigProto() 5 config.gpu_options.per_process_gpu_memory_fraction = 0.5 # 程序最多只能占用指定gpu50%的显存 6 sess = tf.Session(config = config)
但是我们通常在程序开始之前并不知道需要多大的显存,程序回去申请GPU的显存的50%,比如一个8G的内存,被占用了2G,那么程序会申请4G的显存(因为有足够的剩余显存),如果此时显存被占用7G,那么程序会申请剩下的所有的1G的显存。也许你的程序根本用不着这么多显存,200M也许就够了,这时候如果程序能按照需求去申请就好了,幸运的是,这样的方法是存在的:
只需要加上一条语句就好,完整语句为:
1 import tensorflow as tf 2 import os 3 os.environ["CUDA_VISIBLE_DEVICES"] = ‘0‘ #指定第一块GPU可用 4 config = tf.ConfigProto() 5 config.gpu_options.per_process_gpu_memory_fraction = 0.5 # 程序最多只能占用指定gpu50%的显存 6 config.gpu_options.allow_growth = True #程序按需申请内存 7 sess = tf.Session(config = config)
以上是关于tensorflow显存管理的主要内容,如果未能解决你的问题,请参考以下文章