坐标离散化

Posted som_nico

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了坐标离散化相关的知识,希望对你有一定的参考价值。

坐标离散化 (来自《挑战程序设计竞赛》P164)
给出题目和主体代码:

题目:
区域的个数
w*h的格子上画了n条或垂直或水平的宽度为1的直线。求出这些线将格子划分了多少个区域
(w和h的范围都为[1, 1e6],n的范围为[1,500])

思路:
一般先想到的是类似水塘问题的处理,建立数组并深度优先搜索
但是这个问题中w和h最大为1000000,所以没办法创建w*h的数组。因此我们要使用坐标离散化这一技巧

将前后没有变化的行列(意思是消除后不会影响区域个数的)相除后并不会影响区域的个数
数组里只需要存储有直线的行列以及其前后的行列就足够了,这样的话大小最多3n*3n就足够了,因此就可以创建出数组并利用搜索求出区域的个数
(争议:《挑战》原文是说 6n * 6n,可是我觉得似乎有些不对劲,我特意请教了师兄和队友以后,他们也觉得是3n*3n)


收获:
1. 坐标压缩

2. find函数可以在vector中找到某个元素的位置
注意,find函数要求支持 == ,所以如果是自定义类型,需要先重载 ==
blog: http://www.cnblogs.com/fnlingnzb-learner/p/5889026.html


3. 区域很大时,用递归函数可能栈溢出,故而此题改用队列

4. unique函数和erase函数
有关blog:
http://www.cnblogs.com/zhangshu/archive/2011/07/23/2115090.html
http://www.cnblogs.com/liyazhou/archive/2010/02/07/1665421.html

注意:
unique的去重并非真正的去重,只是将重复的元素都排到后面去。此外,unique只能在相邻元素中去重,所以使用之前应该先排序

*****技巧:真正的去重并删除重复部分****
vector<int> v;
sort(v.begin(), v.end());
v.erase(unique( v.begin(), v.end() ), v.end());

 

 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;

const int maxn = 500;
int W,H,N;
int X1[maxn],X2[maxn],Y1[maxn],Y2[maxn];
bool fld[maxn*6][maxn*6];
int dx[4]={0,0,-1,1};
int dy[4]={1,-1,0,0};


//对x1和x2进行坐标离散化,并返回离散后的宽度。(对于y1,y2同理)
//将x1,x2更新为离散后的x1,x2.y不变在x方向上缩小。(处理y1,y2时同理)
int compress(int *x1,int *x2,int w)
{
    vector<int> xs;
    for(int i = 0;i < N;i++)//确定离散后x轴上哪些值还存在
    {
        for(int d = -1;d <= 1; d++)
        {
            int tx1 = x1[i] + d, tx2 = x2[i] + d;
            if(1 <= tx1 && tx1 <= w) xs.push_back(tx1);
            if(1 <= tx2 && tx2 <= W) xs.push_back(tx2);
        }
    }
    sort(xs.begin(),xs.end());
    xs.erase(unique(xs.begin(),xs.end()),xs.end());//去重
    for(int i = 0; i < N; i++)//转化为新的x1,x2;
    {
        x1[i] = find(xs.begin(),xs.end(),x1[i])-xs.begin();
        x2[i] = find(xs.begin(),xs.end(),x2[i])-xs.begin();
    }
    return xs.size();
}

void solve()
{
    //离散化
    W = compress(X1,X2,W);
    H = compress(Y1,Y2,H);
    //填充新的网格
    memset(fld,0,sizeof(fld));
    for(int i=0;i<N;i++)
    {
        for(int y=Y1[i];y<=Y2[i];y++)
        {
            for(int x=X1[i];x<=X2[i];x++)
            {
                fld[y][x]=true;
            }
        }
    }
    //利用BFS计算区域数
    int ans=0;
    for(int y=0;y<H;y++)
    {
        for(int x=0;x<W;x++)
        {
            if(fld[y][x]) continue;
            ans++;
            queue<pair<int, int> > que;
            que.push(make_pair(x,y));
            while(!que.empty())
            {
                int sx=que.front().first, sy=que.front().second;
                que.pop();
                for(int i=0;i<4;i++)
                {
                    int tx=sx + dx[i],ty=sy + dy[i];
                    if(tx<0 || tx>=W || ty<0 || ty>=H || fld[ty][tx]) continue;
                    que.push(make_pair(tx,ty));
                    fld[ty][tx]=true;
                }
            }
        }
    }
    printf("%d\\n",ans);
}

int main()
{
    while(scanf("%d%d%d",&W,&H,&N)==3)
    {
        for(int i=0;i<N;i++)
            scanf("%d",&X1[i]);
        for(int i=0;i<N;i++)
            scanf("%d",&X2[i]);
        for(int i=0;i<N;i++)
            scanf("%d",&Y1[i]);
        for(int i=0;i<N;i++)
            scanf("%d",&Y2[i]);
            solve();
    }
    return 0;
}

/*
输入:
10 10 5
1 1 4 9 10
6 10 4 9 10
4 8 1 1 6
4 8 10 5 10
输出:
6
*/

 

参考:
技巧 坐标离散化 (来自《挑战程序设计竞赛》P164)

以上是关于坐标离散化的主要内容,如果未能解决你的问题,请参考以下文章

hdu1542线段树(扫描线+离散化)

二位平面坐标的离散化

算法复习之坐标离散化

区域的个数 (坐标离散化)

坐标离散化

坐标离散化