代写DNN程序作业代作DNN的资源分配框架

Posted blogmeto

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了代写DNN程序作业代作DNN的资源分配框架相关的知识,希望对你有一定的参考价值。

代写DNN程序作业、代作DNN的资源分配框架
我们提出了一种基于DNN的资源分配框架,来优化CRN的性能,而不管CRN的EE如何。它由三层组成,即输入层,多个隐藏层和输出层。输入是具有连续概率密度函数的瞬时信道功率增益 、 和 ,输出是 或 ,隐藏层和输出层的激活函数是ReLU,即 ,其中 和 分别表示神经单元的输入和输出,后面给出了网络结构的详细参数,为了获得每个神经元的权重,需要对DNN进行训练,训练数据通过[6]提出的传统资源分配策略或[5]给出的节能资源分配策略获得,瞬时信道功率增益 、 和 是具有连续的概率密度函数,信道gSS,gSP和hPS是瑞利分组衰落,分别是指数分布1,0.5和0.5的指数分布
例如指数分布,令 =[ ]表示第i个输入训练过程的向量,输出数据分别由 和 表示,使用传统的方案,可以获得具有大量训练数据的集合,在训练过程中,应用均方误差最小化准则[13],并且由于可以以分布式方式实施,因此利用小批量梯度下降算法来更新权重值。

期中 表示CBS的节能最优发射功率, 和 分别对应ATP和AIP约束的双变量。在(6)式中, 是一个非负成本因子,在[5]中双变量是通过亚梯度法得到的。与SE最大化问题类似,由参数 带入优化问题(5-7)中,然后求出 ,不断用亚梯度法更新 ,在允许误差内,此时的 为最大能效。
每个隐层的神经元数量为200.训练过程基于使用[5]和[6]中提出的具有107信道实现的方案获得的数据。 测试结果通过使用103通道实现获得。 仿真设置来自[5]的设置。 恒定电路功率和放大器系数PC和ζ分别设置为0.05W和0.2。 噪音的方差是0.01。 Pp为60 mW。 用于更新μ和λ的次梯度方法的所有迭代步长都是0.1。 信道gSS,gSP和hPS是瑞利分组衰落,分别是指数分布1,0.5和0.5的指数分布
http://www.daixie0.com/contents/21/1341.html

本团队核心人员组成主要包括硅谷工程师、BAT一线工程师,国内Top5硕士、博士生,精通德英语!我们主要业务范围是代做编程大作业、课程设计等等。

 

我们的方向领域:window编程 数值算法 AI人工智能 金融统计 计量分析 大数据 网络编程 WEB编程 通讯编程 游戏编程多媒体linux 外挂编程 程序API图像处理 嵌入式/单片机 数据库编程 控制台 进程与线程 网络安全  汇编语言 硬件编程 软件设计 工程标准规等。其中代写代做编程语言或工具包括但不限于以下范围:

C/C++/C#代写

Java代写

IT代写

Python代写

辅导编程作业

Matlab代写

Haskell代写

Processing代写

Linux环境搭建

Rust代写

Data Structure Assginment 数据结构代写

MIPS代写

Machine Learning 作业 代写

Oracle/SQL/PostgreSQL/Pig 数据库代写/代做/辅导

Web开发、网站开发、网站作业

ASP.NET网站开发

Finance Insurace Statistics统计、回归、迭代

Prolog代写

Computer Computational method代做

 

因为专业,所以值得信赖。如有需要,请加QQ:99515681 或邮箱:[email protected]

微信:codinghelp

以上是关于代写DNN程序作业代作DNN的资源分配框架的主要内容,如果未能解决你的问题,请参考以下文章

手把手教你使用LabVIEW OpenCV dnn实现图像分类(含源码)

OpenCV3.3深度学习模块(DNN)应用-图像分类

DNN 站点流量

跨 DNN 和 ASP.net 应用程序共享身份验证、成员资格和角色

opencv3.1dnn 未处理异常

使用c ++实现EAST文本检测时出现未定义的cv :: dnn :: experimental_dnn错误