R语言画图
Posted 比较大的小仙女
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言画图相关的知识,希望对你有一定的参考价值。
转http://www.cnblogs.com/jiangmiaomiao/p/6991632.html
0 引言
R支持4种图形类型: base graphics, grid graphics, lattice graphics, ggplot2。其中,Base graphics是R的默认图形系统。
1 基本图形函数plot()
plot()命令中的type参数用于明确图形如何绘制,具体type值使用如下:
- "p" for "points"
- "l" for "lines"
- "o" for "overlaid" (例如,和点重叠的线)
- "s" for "steps"
type=“n”这个特殊选项,可用于在坐标轴上绘制来自多个源的数据。
例如:
plot(x,y,xlab="",ylab="",pch=2,col="red")
pch:数据点形状
col:数据点颜色
2 其他类型的图形函数
(1)饼图:pie()
(2)直方图是表示数字变量分布范围的最常用方式
hist():base R, 记录每个区域出现的次数的直方图
truehist() :MASS package,规整数值给出概率密度的估计。
密度图可看做平滑直方图,例如line(density())
直方图和密度图的一个局限是,难以观察数据是否符合高斯分布(正态分布)
使用qqplot()观察数据是否符合高斯分布(正态分布)
(3)sunflowerplot() 函数
散点图中的每个点对应一个(x, y)对,如果同一(x, y)对出现多次,点会重叠,在散点图中无法观察到。这个问题有很多解决方法,例如 jittering(扰动), 对每个x、y添加小的随机值,因此重复点将作为附近点簇集出现。另一个有效方法是 sunflowerplot()函数,, 每个重复值由太阳花展示,每个花瓣代表某个数据点的一次重复
(4)boxplot()函数
boxplot()函数表示数字变量y对应变量x的每个唯一值的分布情况。x变量不应有太多唯一值,多于10个会使得图形难以观察。
可选参数:
varwidth 允许箱型图宽度随变量变化来显示不同数据子集的大小。
log 允许y值的对数变换
las 允许更多可读的轴标签
# 创建一个y轴取对数和水平标签的变量宽度箱型图
boxplot(y ~ x data = Boston, varwidth = TRUE, log = "y", las = 1)
(5)马赛克图mosaicplot()
马赛克图可看做是分类变量间的散点图,也可以用于观察数字型变量的关系。
(6)bagplot()
一个简单的箱型图基于五个数字给出了一个数字变量的变动范围:
最大值、最小值、中间值、上、下四分位数。
标准箱型图通过以上数字中的三个计算名义上的数据范围,将超出该范围的点标示为极端值,用独立的点表示。包型图表示两个数字变量的关系,二维的包对应标准箱型图中的箱,并标示出极端值。
(7)corrplot()函数图示相关性矩阵
相关性矩阵是获取多个数字变量间关系的初步看法的有效工具。
在图中,瘦长的椭圆表示指定的变量间存在较大相关性,近乎圆形表示相关性近似为0.
# Load the corrplot library for the corrplot() function
library(corrplot)
# Compute the correlation matrix for these variables
corrMat <- cor(data)
# Generate the correlation ellipse plot
corrplot(corrMat,method="ellipse")
(8)构造和绘制rpart() 模型
决策树容易观察和解释,是预测模型的一种常用方式。
# Load the rpart library
library(rpart)
# Fit an rpart model to predict medv from all other Boston variables
tree_model <- rpart(medv~.,data=Boston)
# Plot the structure of this decision tree model
plot(tree_model)
# Add labels to this plot
text(tree_model,cex=0.7)
(9)使用symbol()函数来显示多于两个变量之间的关系。
散点图显示一个数字变量是如何随第二个数字变量改变。symbols()允许扩展散点图来显示其他变量的影响。circles参数用来创建一个气泡图,每个数据点由一个圆圈表示,半径基于第三个变量值。
# Call symbols() to create the default bubbleplot
symbols(Cars93$Horsepower, Cars93$MPG.city,
circles = Cars93$Cylinders)
# Repeat, with the inches argument specified
symbols(Cars93$Horsepower, Cars93$MPG.city,
circles = Cars93$Cylinders,
inches = 0.2)
(10)点阵图示例
# Load the lattice package
library(lattice)
# Use xyplot() to construct the conditional scatterplot
xyplot(calories ~ sugars | shelf, data = UScereal)
3 环境函数par()
par()函数用于设置图形参数,且参数一直保持有效直到被下一个par()命令重置。
空参数的par()命令返回当前所有图形参数值。
例:创建一个一排2列的图形阵列
par(mfrow = c(1, 2))
4 为图形添加细节
(1)line()在已存在的图中添加线条
# Create the numerical vector x
x <- seq(0, 10, length = 200)
# Compute the Gaussian density for x with mean 2 and standard deviation 0.2
gauss1 <- dnorm(x, mean = 2, sd = 0.2)
# Compute the Gaussian density with mean 4 and standard deviation 0.5
gauss2 <- dnorm(x, mean = 4, sd = 0.5)
# Plot the first Gaussian density
plot(x, gauss1, type = "l", ylab = "Gaussian probability density")
# Add lines for the second Gaussian density
lines(x, gauss2, lty = 2, lwd = 3)
(2) points()
在plot() 或 points()中,pch参数可基于数据中的变量来设置。
# Create an empty plot using type = "n"
plot(mtcars$hp, mtcars$mpg, type = "n",
xlab = "Horsepower", ylab = "Gas mileage")
# Add points with shapes determined by cylinder number
points(mtcars$hp, mtcars$mpg, pch = mtcars$cyl)
# Create a second empty plot
plot(mtcars$hp, mtcars$mpg, type = "n",
xlab = "Horsepower", ylab = "Gas mileage")
# Add points with shapes as cylinder characters
points(mtcars$hp, mtcars$mpg,
pch = as.character(mtcars$cyl))
(3)为线性回归模型添加趋势线
abline()在已存在图形中添加直线。这条线由截距参数a和斜率参数b来规定。
例如 abline(a = 0, b = 1) 添加了一条截距为0的等距参考线。
还可通过线性回归模型来规定参数
# Build a linear regression model for the whiteside data
linear_model <- lm(Gas ~ Temp, data = whiteside)
# Create a Gas vs. Temp scatterplot from the whiteside data
plot(whiteside$Temp, whiteside$Gas)
# Use abline() to add the linear regression line
abline(linear_model, lty = 2)
(4)使用text() 标记图形特性
参数:
- x 规定x变量的值
- y 规定y变量的值
- labels 规定x-y键值对的标签。
adj 取0-1之间的任意值,小于0,字在x位置的右边;大于1,字在x位置的左边
cex 字体大小与默认值的比例
font 字体
srt参数旋转字体
(5) legend()
为图形添加解释文字
legend("topright", pch = c(17, 1), legend = c("Before", "After"))
(6)使用 axis() 添加定制轴
当需要使用自己的轴标签时,可在绘图函数中设置参数axes = FALSE阻止生成默认轴,再调用axis生成定制轴
axis()的参数:
side 表示轴位置,1底部,2左边,3顶部,4右边
at 在哪些点绘制刻度
labels 每个刻度的标签
# Create a boxplot of sugars by shelf value, without axes
boxplot(sugars ~ shelf, data = UScereal,
axes = FALSE)
# Add a default y-axis to the left of the boxplot
axis(side = 2)
# Add an x-axis below the plot, labelled 1, 2, and 3
axis(side = 1)
# Add a second x-axis above the plot
axis(side = 3, at = c(1, 2, 3),
labels = c("floor", "middle", "top"))
(7)用supsmu()添加平滑趋势曲线
一些散点图明显不是线性趋势,需要使用曲线来突出数据的行为。参数bass控制趋势曲线的平滑度,默认值为0,按时较大值(最大10)可生成更平滑的曲线。
# Create a scatterplot of MPG.city vs. Horsepower
plot(Cars93$Horsepower, Cars93$MPG.city)
# Call supsmu() to generate a smooth trend curve, with default bass
trend1 <- supsmu(Cars93$Horsepower, Cars93$MPG.city)
# Add this trend curve to the plot
lines(trend1)
# Call supsmu() for a second trend curve, with bass = 10
trend2 <- supsmu(Cars93$Horsepower, Cars93$MPG.city,
bass = 10)
# Add this trend curve as a heavy, dotted line
lines(trend2, lty = 3, lwd = 2)
5 判断散点图数量是否过多
matplot()在同一坐标轴中生成多个散点图。散点图中的点默认由1到n的数字表示,n是包含的散点图的总数。
# Set up a two-by-two plot array
par(mfrow = c(2, 2))
# Use matplot() to generate an array of two scatterplots
matplot(df$calories, df[, c("protein", "fat")],
xlab = "calories", ylab = "")
# Add a title
title("Two scatterplots")
# Use matplot() to generate an array of three scatterplots
matplot(df$calories, df[, c("protein", "fat", "fibre")],
xlab = "calories", ylab = "")
# Add a title
title("Three scatterplots")
# Use matplot() to generate an array of four scatterplots
matplot(df$calories,
df[, c("protein", "fat", "fibre", "carbo")],
xlab = "calories", ylab = "")
# Add a title
title("Four scatterplots")
# Use matplot() to generate an array of five scatterplots
matplot(df$calories,
df[, c("protein", "fat", "fibre", "carbo", "sugars")],
xlab = "calories", ylab = "")
# Add a title
title("Five scatterplots")
6 判断文字数量是否过多
wordcloud()根据出现的频率来展示不同大小的文字。频率更高的文字较大,较少出现的文字字体较小。
第一个参数: 文字的字符向量
第二个参数: 每个文字出现的次数的数字向量
scale: 是一个两元数字向量,表示最大文字和最小文字的相对大小
min.freq 规定文字云只包含至少出现min.freq次的文字,默认值是3.
# Create the wordcloud of all model names with smaller scaling
wordcloud(words = names(model_table),
freq = as.numeric(model_table),
scale = c(0.75, 0.25),
min.freq = 1)
7 用多种图形来观察数据
# Set up a two-by-two plot array
par(mfrow = c(2, 2))
# Plot the raw duration data
plot(geyser$duration, main = "Raw data")
# Plot the normalized histogram of the duration data
truehist(geyser$duration, main = "Histogram")
# Plot the density of the duration data
plot(density(geyser$duration), main = "Density")
# Construct the normal QQ-plot of the duration data
qqPlot(geyser$duration, main = "QQ-plot")
8 构造和展示布局矩阵
1、使用matrix()生成一个图形位置的矩阵,然后用layout()建立一个图形阵列,layout.show()用于验证图形阵列的形状。
# Define row1, row2, row3 for plots 1, 2, and 3
row1 <- c(0, 1)
row2 <- c(2, 0)
row3 <- c(0, 3)
# Use the matrix function to combine these rows into a matrix
layoutMatrix <- matrix(c(row1, row2, row3),
byrow = TRUE, nrow = 3)
# Call the layout() function to set up the plot array
layout(layoutMatrix)
# Show where the three plots will go
layout.show(3)
2 创建图形阵列
# Set up the plot array
layout(layoutMatrix)
# Construct the vectors indexB and indexA
indexB <- which(whiteside$Insul == "Before")
indexA <- which(whiteside$Insul == "After")
# Create plot 1 and add title
plot(whiteside$Temp[indexB], whiteside$Gas[indexB],
ylim = c(0, 8))
title("Before data only")
# Create plot 2 and add title
plot(whiteside$Temp, whiteside$Gas,
ylim = c(0, 8))
title("Complete dataset")
# Create plot 3 and add title
plot(whiteside$Temp[indexA], whiteside$Gas[indexA],
ylim = c(0, 8))
title("After data only")
3、创建不同大小图形的阵列
# Create row1, row2, and layoutVector
row1 <- c(1, 0, 0)
row2 <- c(0, 2, 2)
layoutVector <- c(row1, rep(row2, 2))
# Convert layoutVector into layoutMatrix
layoutMatrix <- matrix(layoutVector, byrow = TRUE, nrow = 3)
# Set up the plot array
layout(layoutMatrix)
# Plot scatterplot
plot(Boston$rad, Boston$zn)
# Plot sunflower plot
sunflowerplot(Boston$rad, Boston$zn)
九、图形函数可返回有用信息
barplot() 函数除了创建图形, 还可以返回图中每个条形的中心位置的数字向量。
当我们想在水平条形图的条形上放置文字时,这个返回值很有用。因此可获取该返回值并在text()函数中作为y参数。使我们可以在任意x位置将文字放置在每个水平条的中间。
# Create a table of Cylinders frequencies
tbl <- table(Cars93$Cylinders)
# Generate a horizontal barplot of these frequencies
mids <- barplot(tbl, horiz = TRUE,
col = "transparent",
names.arg = "")
# Add names labels with text()
text(20, mids, names(tbl))
# Add count labels with text()
text(35, mids, as.numeric(tbl))
十、将图形结果保存为文件
png文件易于分享和作为email附件。使用png()函数生成和命名一个png文件,建立起一个特殊的环境可获取所有的图形输出直到使用dev.off()指令退出该环境。
# Call png() with the name of the file we want to create
png("bubbleplot.png")
# Re-create the plot from the last exercise
symbols(Cars93$Horsepower, Cars93$MPG.city,
circles = Cars93$Cylinders,
inches = 0.2)
# Save our file and return to our interactive session
dev.off()
# Verify that we have created the file
list.files(pattern = "png")
十一图形的颜色
1 12种推荐颜色
IScolors <- c("red", "green", "yellow", "blue","black", "white", "pink", "cyan","gray", "orange", "brown", "purple")
2 使用颜色来增强气泡图
# Iliinsky and Steele color name vector
IScolors <- c("red", "green", "yellow", "blue",
"black", "white", "pink", "cyan",
"gray", "orange", "brown", "purple")
# Create the colored bubbleplot
symbols(Cars93$Horsepower, Cars93$MPG.city,
circles = Cars93$Cylinders, inches = 0.2,
bg = IScolors[as.numeric(Cars93$Cylinders)])
3 使用颜色来增强堆积条形图
barplot函数默认为每个条图的不同分段使用深浅不同的灰色
# Create a table of Cylinders by Origin
tbl <- table(Cars93$Cylinders, Cars93$Origin)
# Create the default stacked barplot
barplot(tbl)
# Enhance this plot with color
barplot(tbl, col = IScolors)
以上是关于R语言画图的主要内容,如果未能解决你的问题,请参考以下文章