numpy切片和布尔型索引
Posted chen-rd
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了numpy切片和布尔型索引相关的知识,希望对你有一定的参考价值。
numpy
标签(空格分隔): numpy 数据挖掘
切片
数组切片是原始数组的视图。这意味着数据不会被复制,视图上的任何修改都会直接反映到源数组上
In [16]: arr
Out[16]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])
In [17]: arr_slice = arr[3:6]
In [18]: arr_slice[:]=5
In [19]: arr_slice
Out[19]: array([5, 5, 5])
In [20]: arr
Out[20]: array([1, 2, 3, 5, 5, 5, 7, 8, 9])
布尔型索引
通过布尔型索引选取数组中的数据,总会产生创建数据的副本,即使返回一模一样的数组也是如此。
In [23]: arr = np.empty((8,4))
In [24]: for i in range(8):
...: arr[i] = i
In [25]: arr[[4,3,2]]
Out[25]:
array([[ 4., 4., 4., 4.],
[ 3., 3., 3., 3.],
[ 2., 2., 2., 2.]])
In [27]: arr = np.arange(32).reshape((8,4))
In [28]: arr
Out[28]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23],
[24, 25, 26, 27],
[28, 29, 30, 31]])
In [29]: arr[[1,5,7,2],[0,3,1,2]]
Out[29]: array([ 4, 23, 29, 10])
In [30]: arr[[1,5,7,2]][:,[0,3,1,2]]
Out[30]:
array([[ 4, 7, 5, 6],
[20, 23, 21, 22],
[28, 31, 29, 30],
[ 8, 11, 9, 10]])
以上是关于numpy切片和布尔型索引的主要内容,如果未能解决你的问题,请参考以下文章
python运算学习之Numpy ------ 数组的切片索引与循环遍历条件和布尔数组
只有整数、切片 (`:`)、省略号 (`...`)、numpy.newaxis (`None`) 和整数或布尔数组是有效的索引
RandomForest IndexError:只有整数、切片(`:`)、省略号(`...`)、numpy.newaxis(`None`)和整数或布尔数组是有效的索引
只有整数、切片 (`:`)、省略号 (`...`)、numpy.newaxis (`None`) 和整数或布尔数组是生成 rnn 的有效索引