理解MapReduce计算构架
Posted 懒得、起昵称
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了理解MapReduce计算构架相关的知识,希望对你有一定的参考价值。
用Python编写WordCount程序任务
程序 |
WordCount |
输入 |
一个包含大量单词的文本文件 |
输出 |
文件中每个单词及其出现次数(频数),并按照单词字母顺序排序,每个单词和其频数占一行,单词和频数之间有间隔 |
- 编写map函数,reduce函数
- 将其权限作出相应修改
- 本机上测试运行代码
- 放到HDFS上运行
- 下载并上传文件到hdfs上
- 用Hadoop Streaming命令提交任务
create ‘Student‘, ‘ S_No ‘,‘S_Name‘, ‘S_Sex‘,‘S_Age‘ put ‘Student‘,‘s001‘,‘S_No‘,‘2015001‘ put ‘Student‘,‘s001‘,‘S_Name‘,‘Zhangsan‘ put ‘Student‘,‘s001‘,‘S_Sex‘,‘male‘ put ‘Student‘,‘s001‘,‘S_Age‘,‘23‘ put ‘Student‘,‘s002‘,‘S_No‘,‘2015003‘ put ‘Student‘,‘s002‘,‘S_Name‘,‘Mary‘ put ‘Student‘,‘s002‘,‘S_Sex‘,‘female‘ put ‘Student‘,‘s002‘,‘S_Age‘,‘22‘ put ‘Student‘,‘s003‘,‘S_No‘,‘2015003‘ put ‘Student‘,‘s003‘,‘S_Name‘,‘Lisi‘ put ‘Student‘,‘s003‘,‘S_Sex‘,‘male‘ put ‘Student‘,‘s003‘,‘S_Age‘,‘24‘
scan ‘Student‘ alter ‘Student‘,‘NAME‘=>‘course‘ put ‘Student‘,‘3‘,‘course:Math‘,‘85‘ dorp ‘Student‘,‘course‘ count ‘s1‘ truncate ‘s1‘
cd /home/hadoop/wc sudo gedit mapper.py # map函数 import sys for i in stdin: i = i.strip() words = i.split() for word in words: print ‘%s\t%s‘ % (word,1) #reduce函数 from operator import itemgetter import sys current_word = None current_count = 0 word = None for i in stdin: i = i.strip() word, count = i.split(‘\t‘,1) try: count = int(count) except ValueError: continue if current_word == word: current_count += count else: if current_word: print ‘%s\t%s‘ % (current_word, current_count) current_count = count current_word = word if current_word == word: print ‘%s\t%s‘ % (current_word, current_count)
chmod a+x /home/hadoop/mapper.py
echo "foo foo quux labs foo bar quux" | /home/hadoop/wc/mapper.py echo "foo foo quux labs foo bar quux" | /home/hadoop/wc/mapper.py | sort -k1,1 | /home/hadoop/wc/reducer.p
cd /home/hadoop/wc wget http://www.gutenberg.org/files/5000/5000-8.txt wget http://www.gutenberg.org/cache/epub/20417/pg20417.txt cd /usr/hadoop/wc hdfs dfs -put /home/hadoop/hadoop/gutenberg/*.txt /user/hadoop/input
以上是关于理解MapReduce计算构架的主要内容,如果未能解决你的问题,请参考以下文章