RAID级别(自用整理)
Posted yi点黑暗
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了RAID级别(自用整理)相关的知识,希望对你有一定的参考价值。
RAID简介
RAID:早期称廉价磁盘冗余阵列( Redundant Array of Inexpensive Disks),因其构建成本并不廉价,现在称为独立硬盘冗余阵列( Redundant Array of Independent Disks),即独立磁盘构成的具有冗余能力的阵列。磁盘阵列是由很多价格较便宜的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。磁盘阵列还能利用同位检查(Parity Check)的观念,在数组中任意一个硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。
RAID把相同的数据存储在多个硬盘的不同的地方(因此,冗余地)的方法。通过把数据放在多个硬盘上,输入输出操作能以平衡的方式交叠,改良性能。因为多个硬盘增加了平均故障间隔时间(MTBF),储存冗余数据也增加了容错。
磁盘阵列其样式有三种,一是外接式磁盘阵列、二是内接式磁盘阵列,三是software RAID。
RAID级别
RAID的级别有RAID 0,RAID 1,RAID 2,RAID 3,RAID 4,RAID 5,RAID 6,RAID 7,RAID 10,RAID 01,RAID 50;但常用的级别有RAID 0,RAID 1,RAID 5,RAID 10,RAID 50,JBOD。
RAID 0
RAID 0(无差错控制的带区组)连续以位或字节为单位分割数据,并行读/写于多个磁盘上,因此具有很高的数据传输率,但它没有数据冗余,因此并不能算是真正的RAID结构。RAID 0只是单纯地提高性能,并没有为数据的可靠性提供保证,而且其中的一个磁盘失效将影响到所有数据。其可用空间为 N*min(S1,S2...SN);最少磁盘上为2个及以上。
RAID 1
RAID 1(镜象结构)是通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互为备份的数据。当原始数据繁忙时,可直接从镜像拷贝中读取数据,因此RAID 1可以提高读取性能,但是写性能略有下降。RAID 1是磁盘阵列中单位成本最高的,但提供了很高的数据安全性和可用性。当一个磁盘失效时,系统可以自动切换到镜像磁盘上读写,而不需要重组失效的数据。其可用空间为 1*min(S1,S2...SN) ,如果用两个不同大小的磁盘建RAID 1,可用空间为较小的那个磁盘,较大的磁盘多出来的空间也可以分区成一个区来使用,不会造成浪费。 最少磁盘数为2个及以上。
RAID 2
RAID2(带汉明码校验)从概念上讲,RAID 2 同RAID 3类似, 两者都是将数据条块化分布于不同的硬盘上, 条块单位为位或字节。然而RAID 2 使用一定的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID 2技术实施更复杂。因此,在商业环境中很少使用。下图左边的各个磁盘上是数据的各个位,由一个数据不同的位运算得到的汉明校验码可以保存另一组磁盘上,具体情况请见下图。由于汉明码的特点,它可以在数据发生错误的情况下将错误校正,以保证输出的正确。它的数据传送速率相当高,如果希望达到比较理想的速度,那最好提高保存校验码ECC码的硬盘,对于控制器的设计来说,它又比RAID3,4或5要简单。没有免费的午餐,这里也一样,要利用汉明码,必须要付出数据冗余的代价。输出数据的速率与驱动器组中速度最慢的相等。
RAID 3
RAID 3(带奇偶校验码的并行传送)这种校验码与RAID2不同,只能查错不能纠错。它访问数据时一次处理一个带区,这样可以提高读取和写入速度,它象RAID 0一样以并行的方式来存放数,但速度没有RAID 0快。校验码在写入数据时产生并保存在另一个磁盘上。需要实现时用户必须要有三个以上的驱动器,写入速率与读出速率都很高,因为校验位比较少,因此计算时间相对而言比较少。用软件实现RAID控制将是十分困难的,控制器的实现也不是很容易。它主要用于图形(包括动画)等要求吞吐率比较高的场合。不同于RAID 2,RAID 3使用单块磁盘存放奇偶校验信息。如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据。 如果奇偶盘失效,则不影响数据使用。RAID 3对于大量的连续数据可提供很好的传输率,但对于随机数据,奇偶盘会成为写操作的瓶颈。 利用单独的校验盘来保护数据虽然没有镜像的安全性高,但是硬盘利用率得到了很大的提高,为n-1。
RAID 4
RAID 4(带奇偶校验码的独立磁盘结构)RAID4和RAID3很象,不同的是,它对数据的访问是按数据块进行的,也就是按磁盘进行的,每次是一个盘。在图上可以这么看,RAID3是一次一横条,而RAID4一次一竖条。它的特点的RAID3也挺象,不过在失败恢复时,它的难度可要比RAID3大得多了,控制器的设计难度也要大许多,而且访问数据的效率不怎么好。
RAID 5
RAID 5(分布式奇偶校验的独立磁盘结构)使用的是Disk Striping(硬盘分区)技术。RAID 5至少需要三颗硬盘,RAID 5不是对存储的数据进行备份,而是把数据和相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上。当RAID5的一个磁盘数据发生损坏后,可以利用剩下的数据和相应的奇偶校验信息去恢复被损坏的数据。RAID 5具有和RAID 0相近似的数据读取速度,只是因为多了一个奇偶校验信息,写入数据的速度相对单独写入一块硬盘的速度略慢。其可用空间(N-1)*min(S1,S2...SN)。
RAID 6
RAID 6(带有两种分布存储的奇偶校验码的独立磁盘结构)是对RAID5的扩展,主要是用于要求数据绝对不能出错的场合。当然了,由于引入了第二种奇偶校验值,所以需要4个磁盘,同时对控制器的设计变得十分复杂,写入速度也不好,用于计算奇偶校验值和验证数据正确性所花费的时间比较多,造成了不必须的负载。其可用空间为(N-2)*min(S1,S2...SN) 。
RAID 7
RAID 7(优化的高速数据传送磁盘结构)所有的I/O传送均是同步进行的,可以分别控制,这样提高了系统的并行性,提高系统访问数据的速度;每个磁盘都带有高速缓冲存储器,实时操作系统可以使用任何实时操作芯片,达到不同实时系统的需要。允许使用SNMP协议进行管理和监视,可以对校验区指定独立的传送信道以提高效率。可以连接多台主机,因为加入高速缓冲存储器,当多用户访问系统时,访问时间几乎接近于0。由于采用并行结构,因此数据访问效率大大提高。需要注意的是它引入了一个高速缓冲存储器,这有利有弊,因为一旦系统断电,在高速缓冲存储器内的数据就会全部丢失,因此需要和UPS一起工作。
RAID 10
RAID 10(镜象阵列条带)无非是一个带区结构加一个镜象结构,因为两种结构各有优缺点,因此可以相互补充,达到既高效又高速还可以的目的。先进行镜像(RAID1),再进行条带存放(RAID0)。主要用于容量不大,但要求速度和差错控制的数据库中。最少需要4+2*N块磁盘,且每组镜像最多只能损坏一块,其可用空间为 N*min(S1,S2...SN)/2。
RAID 01
把RAID0和RAID1技术结合起来,即RAID0+1。数据除分布在多个盘上外,每个盘都有其物理镜像盘,提供全冗余能力,允许一个以下磁盘故障,而不影响数据可用性,并具有快速读/写能力。要求至少4个硬盘才能作成RAID0+1。
RAID 50
RAID 50是RAID5与RAID0的结合。此配置在RAID5的子磁盘组的每个磁盘上进行包括奇偶信息在内的数据的剥离。每个RAID5子磁盘组要求至少三个硬盘。RAID50具备更高的容错能力,因为它允许某个组内有一个磁盘出现故障,而不会造成数据丢失。而且因为奇偶位分部于RAID5子磁盘组上,故重建速度有很大提高。优势:更高的容错能力,具备更快数据读取速率的潜力。需要注意的是:磁盘故障会影响吞吐量。故障后重建信息的时间比镜像配置情况下要长。
RAID 53
越到后面的结构就是对前面结构的一种重复和再利用,这种结构就是RAID3和带区结构的统一,因此它速度比较快,也有容错功能。但价格十分高,不易于实现。这是因为所有的数据必须经过带区和按位存储两种方法,在考虑到效率的情况下,要求这些磁盘同步真是不容易。
JBOD模式
JBOD(Just a Bunch of Disk)通常又称为Span。它是在逻辑上将几个物理磁盘一个接一个连起来, 组成一个大的逻辑磁盘。JBOD不提供容错,该阵列的容量等于组成Span的所有磁盘的容量的总和。JBOD严格意义上说,不属于RAID的范围。不过现在很多IDE RAID控制芯片都带着种模式,JBOD就是简单的硬盘容量叠加,但系统处理时并没有采用并行的方式,写入数据的时候就是先写的一块硬盘,写满了再写第二块硬盘 ,以此类推。
raid总结
以上是关于RAID级别(自用整理)的主要内容,如果未能解决你的问题,请参考以下文章