理解MapReduce

Posted 086刘伟锋

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了理解MapReduce相关的知识,希望对你有一定的参考价值。


1. 用Python编写WordCount程序并提交任务

程序

WordCount

输入

一个包含大量单词的文本文件

输出

文件中每个单词及其出现次数(频数),并按照单词字母顺序排序,每个单词和其频数占一行,单词和频数之间有间隔

  1. 编写map函数,reduce函数
  2. 将其权限作出相应修改
  3. 本机上测试运行代码
  4. 放到HDFS上运行
    1. 将之前爬取的文本文件上传到hdfs上
    2. 用Hadoop Streaming命令提交任务
  5. 查看运行结果
cd /home/hadoop/wc
sudo gedit mapper.py

  

#!/usr/bin/env python
import sys
for i in stdin:
    i = i.strip()
    words = i.split()
    for word in words:
    print \'%s\\t%s\' % (word,1)
chmod a+x /home/hadoop/mapper.py
cd /home/hadoop/wc
sudo gedit reducer.py
#!/usr/bin/env python
from operator import itemgetter
import sys

current_word = None
current_count = 0
word = None

for i in stdin:
    i = i.strip()
    word, count = i.split(\'\\t\',1)
    try:
    count = int(count)
    except ValueError:
    continue

    if current_word == word:
    current_count += count 
    else:
    if current_word:
        print \'%s\\t%s\' % (current_word, current_count)
    current_count = count
    current_word = word

if current_word == word:
    print \'%s\\t%s\' % (current_word, current_count)
chmod a+x /home/hadoop/reduce.py
echo "foo foo quux labs foo bar quux" | /home/hadoop/wc/mapper.py

echo "foo foo quux labs foo bar quux" | /home/hadoop/wc/mapper.py | sort -k1,1 | /home/hadoop/wc/reducer.p
cd  /home/hadoop/wc
wget http://www.gutenberg.org/files/5000/5000-8.txt
wget http://www.gutenberg.org/cache/epub/20417/pg20417.txt
cd /usr/hadoop/wc
hdfs dfs -put /home/hadoop/hadoop/gutenberg/*.txt /user/hadoop/input

 

 

2. 用mapreduce 处理气象数据集

编写程序求每日最高最低气温,区间最高最低气温

  1. 气象数据集下载地址为:ftp://ftp.ncdc.noaa.gov/pub/data/noaa
  2. 按学号后三位下载不同年份月份的数据(例如201506110136号同学,就下载2013年以6开头的数据,看具体数据情况稍有变通)
  3. 解压数据集,并保存在文本文件中
  4. 对气象数据格式进行解析
  5. 编写map函数,reduce函数
  6. 将其权限作出相应修改
  7. 本机上测试运行代码
  8. 放到HDFS上运行
    1. 将之前爬取的文本文件上传到hdfs上
    2. 用Hadoop Streaming命令提交任务
  9. 查看运行结果
    cd /usr/hadoop
    sodu mkdir qx
    cd /usr/hadoop/qx
    wget -D --accept-regex=REGEX -P data -r -c ftp://ftp.ncdc.noaa.gov/pub/data/noaa/2008/6*
    cd /usr/hadoop/qx/data/ftp.ncdc.noaa.gov/pub/data/noaa/2008
    sudo zcat 1*.gz >qxdata.txt
    cd /usr/hadoop/qx
    from operator import itemggetter
    import sys
     
    current_word = None
    current_count = 0
    word = None
     
    for i in sys.stdin:
         i = i.strip()
         word,count = i.split(\'\\t\', 1)
         try:
              count = int(count)
         except ValueError:
              continue
     
         if current_word == word:
             if current_count > count:
                  current_count = count
         else:
             if current_word:
                 print \'%s\\t%s\' % (current_word, current_count)
             current_count = count
             current_word = word
     
    if current_word == word:
         print \'%s\\t%s\' % (current_word, current_count)

    chmod a+x /usr/hadoop/qx/mapper.py
    chmod a+x /usr/hadoop/qx/reducer.py

      

以上是关于理解MapReduce的主要内容,如果未能解决你的问题,请参考以下文章

理解MapReduce计算构架

理解MapReduce计算构架

理解MapReduce

理解MapReduce

理解MapReduce

理解Mapreduce