hdu5834 Magic boy Bi Luo with his excited tree 树形dp
Posted Mychael
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hdu5834 Magic boy Bi Luo with his excited tree 树形dp相关的知识,希望对你有一定的参考价值。
题目链接
题解
思路很粗犷,实现很难受
设\(f[i][0|1]\)表示向子树走回来或不回来的最大收益
设\(g[i][0|1]\)表示向父亲走走回来或不回来的最大收益
再设\(h[i]\)为\(f[i][0]\)的次优收益
对于\(f[i][1]\),贪心选择所有\(f[v][1] - 2 * w \ge 0\)的子树即可
对于\(f[i][0]\),贪心选择所有没有被选的子树的\(f[v][0] - w \le 0\)的最大值 或者 被选子树\(f[v][1] - 2 * w\)改成\(f[v][0] - w\)后多产生收益的最大值
同时维护次优\(h[v]\)
对于\(g[i][1]\),设父亲为\(v\),就等于\(f[v][1] + g[v][1]\)再减去\(i\)对\(f[v][1]\)所作出的贡献【因为往父亲走要忽视\(i\)这课子树】
对于\(g[i][0]\)也是类似的,但是由于忽视\(i\)这课子树后\(f[i][0]\)的决策可能发生改变,所以要在之前算好次优决策\(h[v]\)
这种树形dp简单题都做不出了
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = head[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<‘ ‘; puts("");
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == ‘-‘) flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int head[maxn],ne = 2;
struct EDGE{int to,nxt,w;}ed[maxn << 1];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){v,head[u],w}; head[u] = ne++;
ed[ne] = (EDGE){u,head[v],w}; head[v] = ne++;
}
int n,fa[maxn],d[maxn],w[maxn],f[maxn][2],g[maxn][2],h[maxn],way[maxn];
//cal son
void dfs1(int u){
f[u][0] = f[u][1] = w[u];
int mx = -INF,v,tmp,mx2 = -INF;
Redge(u) if ((to = ed[k].to) != fa[u]){
fa[to] = u; d[to] = ed[k].w; dfs1(to);
if (f[to][1] - 2 * d[to] >= 0){
f[u][1] += f[to][1] - 2 * d[to];
tmp = (f[to][0] - d[to]) - (f[to][1] - 2 * d[to]);
if (tmp > mx) mx2 = mx,mx = tmp,v = to;
else if (tmp > mx2) mx2 = tmp;
}
else if ((tmp = f[to][0] - d[to]) >= 0){
if (tmp > mx) mx2 = mx,mx = tmp,v = to;
else if (tmp > mx2) mx2 = tmp;
}
}
if (mx >= 0) f[u][0] = f[u][1] + mx,way[u] = v;
else f[u][0] = f[u][1],way[u] = 0;
if (mx2 >= 0) h[u] = f[u][1] + mx2;
else h[u] = f[u][1];
}
//cal father
void dfs2(int u){
int v = fa[u];
//back
if (f[u][1] - 2 * d[u] >= 0)
g[u][1] = max(0,f[v][1] + g[v][1] - (f[u][1] - 2 * d[u]) - 2 * d[u]);
else g[u][1] = max(0,f[v][1] + g[v][1] - 2 * d[u]);
//not back
if (f[u][1] - 2 * d[u] >= 0){
g[u][0] = max(0,f[v][1] + g[v][0] - (f[u][1] - 2 * d[u]) - d[u]);
if (way[v] == u)
g[u][0] = max(g[u][0],h[v] + g[v][1] - (f[u][1] - 2 * d[u]) - d[u]);
else g[u][0] = max(g[u][0],f[v][0] + g[v][1] - (f[u][1] - 2 * d[u]) - d[u]);
}
else{
g[u][0] = max(0,f[v][1] + g[v][0] - d[u]);
if (way[v] == u)
g[u][0] = max(g[u][0],h[v] + g[v][1] - d[u]);
else g[u][0] = max(g[u][0],f[v][0] + g[v][1] - d[u]);
}
Redge(u) if ((to = ed[k].to) != fa[u])
dfs2(to);
}
int main(){
int T = read();
REP(C,T){
n = read(); ne = 2;
REP(i,n) w[i] = read(),head[i] = 0;
int a,b,w;
for (int i = 1; i < n; i++){
a = read(); b = read(); w = read();
build(a,b,w);
}
dfs1(1);
dfs2(1);
printf("Case #%d:\n",C);
REP(i,n) printf("%d\n",max(f[i][1] + g[i][0],f[i][0] + g[i][1]));
}
return 0;
}
以上是关于hdu5834 Magic boy Bi Luo with his excited tree 树形dp的主要内容,如果未能解决你的问题,请参考以下文章
树形动规HDU 5834 Magic boy Bi Luo with his excited tree
HDU 5834 Magic boy Bi Luo with his excited tree (树形DP)
Magic boy Bi Luo with his excited tree (树形dp)
2016中国大学生程序设计竞赛 - 网络选拔赛 C. Magic boy Bi Luo with his excited tree
玲珑学院OJ 1023 - Magic boy Bi Luo with his excited math problem 树状数组暴力