tf.expand_dims()

Posted 笨拙的忍者

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tf.expand_dims()相关的知识,希望对你有一定的参考价值。

转载:https://blog.csdn.net/jasonzzj/article/details/60811035

TensorFlow中,想要维度增加一维,可以使用tf.expand_dims(input, dim, name=None)函数。当然,我们常用tf.reshape(input, shape=[])也可以达到相同效果,但是有些时候在构建图的过程中,placeholder没有被feed具体的值,这时就会包下面的错误:TypeError: Expected binary or unicode string, got 1 
在这种情况下,我们就可以考虑使用expand_dims来将维度加1。比如我自己代码中遇到的情况,在对图像维度降到二维做特定操作后,要还原成四维[batch, height, width, channels],前后各增加一维。如果用reshape,则因为上述原因报错

one_img2 = tf.reshape(one_img, shape=[1, one_img.get_shape()[0].value, one_img.get_shape()[1].value, 1])

用下面的方法可以实现:

one_img = tf.expand_dims(one_img, 0)
one_img = tf.expand_dims(one_img, -1) #-1表示最后一维

在最后,给出官方的例子和说明

# ‘t‘ is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]

# ‘t2‘ is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]

Args: 
input: A Tensor. 
dim: A Tensor. Must be one of the following types: int32, int64. 0-D (scalar). Specifies the dimension index at which to expand the shape of input. 
name: A name for the operation (optional).

Returns: 
A Tensor. Has the same type as input. Contains the same data as input, but its shape has an additional dimension of size 1 added.

 

以上是关于tf.expand_dims()的主要内容,如果未能解决你的问题,请参考以下文章

tensorrt不支持:tf.unpack,tf.slice,tf.tile,tf.expand_dims,tf.fill,tf.cast,tf.floor_div,tf.range

tensorflow2.0 squeeze出错

tf.stack

tf.stack

tf.stack

thensorsflow 矩阵增加/降低一个维度