HDFS中心缓存管理

Posted Android路上的人

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDFS中心缓存管理相关的知识,希望对你有一定的参考价值。

前言


众所周知,HDFS作为一个分布式文件系统.存储着海量的数据,每天的IO读写操作次数当然是非常高的.所以在之前的文章中,我们提到了用HDFS的异构存储来做冷热数据的分类存储,但比较好的一点是,他们还是隶属于同一个集群.那么问题来了,是否我还可以做进一步的改进,优化呢,因为有的数据文件访问在某个时间段是大家公用的,访问频率甚至比一般的热点文件还要高很多.但是过了那个时间点,就又会变为普通的文件.本文就来分享HDFS对于这一需求点的解决方案,HDFS中心缓存管理.这一方面的功能属性,可能也被很多人所忽视了.

HDFS缓存适用场景


首先,我们先要了解HDFS的缓存所适用的场景,换句话说,他能解决我们哪些具体的问题.

缓存HDFS中的热点公共资源文件和短期临时的热点数据文件

第一种case: 公共资源文件. 这些文件可以是一些存放于HDFS中的依赖资源jar包,或是一些算法学习依赖.so文件等等.像这类的数据文件,放在HDFS上的好处是,我可以在HDFS上全局共享嘛,不用到本地机器上去依赖,而且好管理,我可以直接更新到HDFS上.但是这种场景更好的做法是把它做成distributed cache,否则在程序中将会发送大量的请求到NameNode中去获取这些资源文件的和内容.而且这种请求量是非常恐怖的,不是说请求一次就够了,而是调用一次,请求一次.

第二种case: 短期临时的热点数据文件.比如集群中每天需要统计的报表数据,需要读取前一天的或是最近一周的数据做离线分析,但是过了这个期限内的基本就很少再用到了,就可以视为冷数据了.那么这个时候就可以把符合这个时间段的数据做缓存处理,然后过期了,就直接从缓存中清除.

以上2种场景,都是HDFS Cache非常适用的场景.

HDFS缓存的结构设计


在HDFS中,最终缓存的本质上还是一个INodeFile文件.但是在逻辑上,引出了下面几个概念.

CacheDirective


CacheDirective是缓存的基本单元,但是这里cacheDirective不一定是一个目录,也可以是一个文件.其中包括以下主要的变量:

public final class CacheDirective implements IntrusiveCollection.Element {
  // 惟一标识Id
  private final long id;
  // 目标缓存路径
  private final String path;
  // 对应路径的文件副本数
  private final short replication;
  // 所属CachePool
  private CachePool pool;
  // 过期时间
  private final long expiryTime;

  // 相关统计指标
  private long bytesNeeded;
  private long bytesCached;
  private long filesNeeded;
  private long filesCached;
  ...

在这里,我们看到了一个新的概念,CachePool,可以得出下面一个结论:

CacheDirective属于对应的CachePool缓存池

CachePool


下面就是CachePool概念的定义了

public final class CachePool {
  // 缓存池名称
  @Nonnull
  private final String poolName;
  // 所属用户名
  @Nonnull
  private String ownerName;
  // 所属组名
  @Nonnull
  private String groupName;
  // 缓存池权限
  /**
   * Cache pool permissions.
   * 
   * READ permission means that you can list the cache directives in this pool.
   * WRITE permission means that you can add, remove, or modify cache directives
   *       in this pool.
   * EXECUTE permission is unused.
   */
  @Nonnull
  private FsPermission mode;
  // 缓存池最大允许缓存字节数
  /**
   * Maximum number of bytes that can be cached in this pool.
   */
  private long limit;
  // 过期时间
  /**
   * Maximum duration that a CacheDirective in this pool remains valid,
   * in milliseconds.
   */
  private long maxRelativeExpiryMs;
  // 变量统计相关值
  private long bytesNeeded;
  private long bytesCached;
  private long filesNeeded;
  private long filesCached;
  ...
  // 缓存对象列表
  @Nonnull
  private final DirectiveList directiveList = new DirectiveList(this);
  ...

我们可以看到,在cachePool中,也确实维护了一个cacheDirective缓存单元列表.而这些cachePool缓存池则是被CacheManager所掌管.CacheManager在这里就好比是一个总管理者的角色.当然,在CacheManager中还有运行着一个很重要的服务,就是CacheReplicationMonitor,这个监控程序会周期扫描当前的最新的缓存路径,并分发到对应的DataNode节点上,这个线程服务在后面还会具体提到.所以HDFS Cache的总的结构关系如下图所示:

这里写图片描述

HDFS缓存管理机制分析


其实之前本人已经写过一篇关于HDFS缓存管理机制方面的文章,HDFS缓存机制,但是现在来看,还并不是很全面,之前的文章完全遗漏了CacheAdmin这块的东西.所以在本小节中,要补充2方面的分析介绍.

  • CacheAdmin CLI命令在CacheManager的实现
  • CacheMAnager的CacheReplicationMonitor如何将目标缓存文件缓存到DataNode中

下面先来看第一点涉及到的内容

CacheAdmin CLI命令在CacheManager的实现


在CacheAdmin中的每个操作命令,最后通过RPC调用都会对应到CacheManager的一个具体操作方法.所以在此过程中,要解决下面几个主要疑点:

  • CacheManager维护了怎样的CachePool列表,CacheDirective关系
  • 添加新的CacheDirective,CachePool有哪些特殊的细节

对于第一个问题,CacheManager确实维护了多种映射关系的CachePool,CacheDirective列表关系,如下:

public final class CacheManager {
  ...
  // CacheDirective id对CacheDirective的映射关系
  /**
   * Cache directives, sorted by ID.
   *
   * listCacheDirectives relies on the ordering of elements in this map
   * to track what has already been listed by the client.
   */
  private final TreeMap<Long, CacheDirective> directivesById =
      new TreeMap<Long, CacheDirective>();
  //缓存路径对CacheDirective列表的映射关系,说明一个文件/目录路径可以同时被多次缓存
  ...
  /**
   * Cache directives, sorted by path
   */
  private final TreeMap<String, List<CacheDirective>> directivesByPath =
      new TreeMap<String, List<CacheDirective>>();
  // 缓存池名称对CachePool的映射
  /**
   * Cache pools, sorted by name.
   */
  private final TreeMap<String, CachePool> cachePools =
      new TreeMap<String, CachePool>();
  ...

以上的3大映射关系就是CacheManager对象中存储着的,第二条关系缓存路径对缓存对象列表的映射是一开始我感到奇怪的,后来发现,对同一个缓存路径,是可以多次缓存的.由于定义了这3类结构关系,所以在添加CacheDirective实例对象时候会涉及到一些更新操作.以addDirective方法为例

  public CacheDirectiveInfo addDirective(
      CacheDirectiveInfo info, FSPermissionChecker pc, EnumSet<CacheFlag> flags)
      throws IOException {
    assert namesystem.hasWriteLock();
    CacheDirective directive;
    try {
      // 获取所属缓存池
      CachePool pool = getCachePool(validatePoolName(info));
      // 验证是否有权限
      checkWritePermission(pc, pool);
      // 验证缓存路径
      String path = validatePath(info);
      // 验证副本数
      short replication = validateReplication(info, (short)1);
      // 验证过期时间
      long expiryTime = validateExpiryTime(info, pool.getMaxRelativeExpiryMs());
      // Do quota validation if required
      // 如果带上了force参数,就要验证CachePool是否还有剩余空间添加新的缓存
      if (!flags.contains(CacheFlag.FORCE)) {
        checkLimit(pool, path, replication);
      }
      // All validation passed
      // Add a new entry with the next available ID.
      // 获取下一个Id
      long id = getNextDirectiveId();
      // 构建新的CacheDirective实例
      directive = new CacheDirective(id, path, replication, expiryTime);
      // 进行添加操作
      addInternal(directive, pool);
    } catch (IOException e) {
    ...
  }

在上面的方法中,有一个步骤比较特殊,就是force参数处理时候的空间限制问题,默认CachePool是unlimit不受限的.然后在addInternal中就会涉及到存储关系的更新.

  private void addInternal(CacheDirective directive, CachePool pool) {
    boolean addedDirective = pool.getDirectiveList().add(directive);
    assert addedDirective
    // 添加新的id->directive
    directivesById.put(directive.getId(), directive);
    String path = directive.getPath();
    List<CacheDirective> directives = directivesByPath.get(path);
    if (directives == null) {
      directives = new ArrayList<CacheDirective>(1);
      directivesByPath.put(path, directives);
    }
    //在找到的path对应的directives list中添加新的directive
    directives.add(directive);
    // 更新新的统计值
    // Fix up pool stats
    CacheDirectiveStats stats =
        computeNeeded(directive.getPath(), directive.getReplication());
    directive.addBytesNeeded(stats.getBytesNeeded());
    directive.addFilesNeeded(directive.getFilesNeeded());
    // 然后设置需要重扫描,因为缓存目录已经被更新了
    setNeedsRescan();
  }

类似的还有添加CachePool的操作,代码如下:

  public CachePoolInfo addCachePool(CachePoolInfo info)
      throws IOException {
    assert namesystem.hasWriteLock();
    CachePool pool;
    try {
      CachePoolInfo.validate(info);
      // 获取缓存池名称
      String poolName = info.getPoolName();
      pool = cachePools.get(poolName);
      // 如果获取到的缓存池不为空,说明已经存在,抛异常
      if (pool != null) {
        throw new InvalidRequestException("Cache pool " + poolName
            + " already exists.");
      }
      // 在default cachepool的基础上构造出新的cachepool
      pool = CachePool.createFromInfoAndDefaults(info);
      // 添加到CachePool存储关系列表中
      cachePools.put(pool.getPoolName(), pool);
    } catch (IOException e) {
      LOG.info("addCachePool of " + info + " failed: ", e);
      throw e;
    }
    LOG.info("addCachePool of {} successful.", info);
    return pool.getInfo(true);
  }

当然在CacheManager还有其他modifyCacheDirective和list的操作,在逻辑上没有什么特殊之处,这里就不展开过多的介绍了.写到这里,再回头看CacheManager维护的3种存储关系,还是有一定的巧妙之处的,为什么这么说呢?

CacheManager通过id,path到CacheDirective, CacheDirective列表和name到CachePool的多个映射关系,使得原本逻辑上的父子关系平级化了,更方便了多条件的灵活查询.比如说我通过id去找对应的缓存对象,就不需要重新遍历的去找了.

CacheReplicationMonitor缓存监控服务


如果把上一小节中的CacheManger的缓存添加删除操作比喻为一个工厂中的零件加工,那么CacheReplicationMonitor服务就好比是一个强大的发动机,它会将这些零件经过完美的处理并分配的对应的场合中去.可以说,CacheReplicationMonitor是一个指挥者的角色.

但是这个”指挥者”也同样被”大管家”CacheManager所掌管,并控制着他的服务开启与关闭

public final class CacheManager {
  ...
  // CacheManager中的CacheReplicationMonitor监控服务
  /**
   * The CacheReplicationMonitor.
   */
  private CacheReplicationMonitor monitor;

CacheReplicationMonitor监控线程,正如其名称所代表的含义:

缓存副本块的监控服务.

因为是一个Monitor类型的监控程序,所以里面一定会循环的执行特定的操作.而操作的对象就是CacheBlock缓存块,在CacheReplicationMonitor中定义如下.

public class CacheReplicationMonitor extends Thread implements Closeable {
  ...
  // 当前的需要缓存的目标缓存块集合
  private final GSet<CachedBlock, CachedBlock> cachedBlocks;
  ...

接着进入其run方法.

  public void run() {
    long startTimeMs = 0;
    Thread.currentThread().setName("CacheReplicationMonitor(" +
        System.identityHashCode(this) + ")");
    LOG.info("Starting CacheReplicationMonitor with interval " +
             intervalMs + " milliseconds");
    try {
      long curTimeMs = Time.monotonicNow();
      // 主循环
      while (true) {
        lock.lock();
        try {
          // 是否进行下一次rescan扫描的逻辑判断
          while (true) {
            if (shutdown) {
              LOG.info("Shutting down CacheReplicationMonitor");
              return;
            }
            if (completedScanCount < neededScanCount) {
              LOG.debug("Rescanning because of pending operations");
              break;
            }
            long delta = (startTimeMs + intervalMs) - curTimeMs;
            if (delta <= 0) {
              LOG.debug("Rescanning after {} milliseconds", (curTimeMs - startTimeMs));
              break;
            }
            doRescan.await(delta, TimeUnit.MILLISECONDS);
            curTimeMs = Time.monotonicNow();
          }
        } finally {
          lock.unlock();
        }
        startTimeMs = curTimeMs;
        mark = !mark;
        // 执行新的扫描操作
        rescan();
        ...
  }

所以rescan方法才是我们最核心的操作,进入此方法.

  private void rescan() throws InterruptedException {
    scannedDirectives = 0;
    scannedBlocks = 0;
    try {
      ...
      // 重置统计计数值
      resetStatistics();
      // 重新扫描缓存目录单元
      rescanCacheDirectives();
      // 重新扫描当前CacheBlock缓存块
      rescanCachedBlockMap();
      blockManager.getDatanodeManager().resetLastCachingDirectiveSentTime();
    } finally {
      namesystem.writeUnlock();
    }
  }

在rescan内部,会进行主要3大部分的操作.

第一部分,resetStatistics重置统计变量计数值.因为要进行完全新一轮的缓存过程,所以CachePool以及其所包含的CacheDirective都要重新计数.代码执行过程如下:

  private void resetStatistics() {
    for (CachePool pool: cacheManager.getCachePools()) {
      pool.resetStatistics();
    }
    for (CacheDirective directive: cacheManager.getCacheDirectives()) {
      directive.resetStatistics();
    }
  }

第二部分,rescanCacheDirectives,在这个过程中,就会扫描之前保存在CacheManager中的那些CacheDirectives.
具体操作如下:

  private void rescanCacheDirectives() {
    FSDirectory fsDir = namesystem.getFSDirectory();
    final long now = new Date().getTime();
    // 获取CacheManager中保存的全部的CacheDirective缓存对象
    for (CacheDirective directive : cacheManager.getCacheDirectives()) {
      scannedDirectives++;
      // Skip processing this entry if it has expired
      // 跳过已经过期的的CacheDirective
      if (directive.getExpiryTime() > 0 && directive.getExpiryTime() <= now) {
        LOG.debug("Directive {}: the directive expired at {} (now = {})",
             directive.getId(), directive.getExpiryTime(), now);
        continue;
      }
      String path = directive.getPath();
      INode node;
      try {
        // 获取CacheDirective缓存路径所代表的INode对象
        node = fsDir.getINode(path);
      } catch (UnresolvedLinkException e) {
        // We don't cache through symlinks
        LOG.debug("Directive {}: got UnresolvedLinkException while resolving "
                + "path {}", directive.getId(), path
        );
        continue;
      }
      if (node == null)  {
        LOG.debug("Directive {}: No inode found at {}", directive.getId(),
            path);
      } else if (node.isDirectory()) {
        // 如果此路径代表的是目录
        INodeDirectory dir = node.asDirectory();
        ReadOnlyList<INode> children = dir
            .getChildrenList(Snapshot.CURRENT_STATE_ID);
        for (INode child : children) {
          if (child.isFile()) {
            // 则进行扫描文件
            rescanFile(directive, child.asFile());
          }
        }
      } else if (node.isFile()) {
        // 如果是文件则直接进行扫描
        rescanFile(directive, node.asFile());
      } else {
        LOG.debug("Directive {}: ignoring non-directive, non-file inode {} ",
            directive.getId(), node);
      }
    }
  }

这里继续进入rescanFile的操作方法

  private void rescanFile(CacheDirective directive, INodeFile file) {
    // 获取文件所包含的block信息
    BlockInfo[] blockInfos = file.getBlocks();

    // Increment the "needed" statistics
    directive.addFilesNeeded(1);
    // We don't cache UC blocks, don't add them to the total here
    // 计算缓存需要的字节大小,不包括正在被写的块
    long neededTotal = file.computeFileSizeNotIncludingLastUcBlock() *
        directive.getReplication();
    directive.addBytesNeeded(neededTotal);

    // The pool's bytesNeeded is incremented as we scan. If the demand
    // thus far plus the demand of this file would exceed the pool's limit,
    // do not cache this file.
    CachePool pool = directive.getPool();
    // 如果缓存池所需要缓存的空间大小超过限制,则返回
    if (pool.getBytesNeeded() > pool.getLimit()) {
      LOG.debug("Directive {}: not scanning file {} because " +
          "bytesNeeded for pool {} is {}, but the pool's limit is {}",
          directive.getId(),
          file.getFullPathName(),
          pool.getPoolName(),
          pool.getBytesNeeded(),
          pool.getLimit());
      return;
    }

    long cachedTotal = 0;
    // 遍历目标缓存文件所拥有的block
    for (BlockInfo blockInfo : blockInfos) {
      if (!blockInfo.getBlockUCState().equals(BlockUCState.COMPLETE)) {
        // We don't try to cache blocks that are under construction.
        LOG.trace("Directive {}: can't cache block {} because it is in state "
                + "{}, not COMPLETE.", directive.getId(), blockInfo,
            blockInfo.getBlockUCState()
        );
        continue;
      }
      // 构造CacheBlock
      Block block = new Block(blockInfo.getBlockId());
      CachedBlock ncblock = new CachedBlock(block.getBlockId(),
          directive.getReplication(), mark);
      CachedBlock ocblock = cachedBlocks.get(ncblock);
      if (ocblock == null) {
        // 如果目标缓存列表中不存在,则进行添加
        cachedBlocks.put(ncblock);
        ocblock = ncblock;
      } else {
        // 如果存在,则进行相关变量更新
        ...
          ocblock.setReplicationAndMark(directive.getReplication(), mark);
        }
      }
      LOG.trace("Directive {}: setting replication for block {} to {}",
          directive.getId(), blockInfo, ocblock.getReplication());
    }
    ...
  }

可以将上述操作提取成下面几个过程:

  • 1.获取缓存文件所拥有的Block组信息
  • 2.判断CachePool的缓存大小是否超过限制
  • 3.遍历Block,并根据Block块构造CacheBlock缓存块
  • 4.CacheBlocks列表中没有存在则直接添加,否则进行部分信息的更新

可能这里有人会有疑问,为什么CacheBlocks可能已经包含目标缓存块的呢,2种情况:

  • 第一种情况.当前目标缓存块在上一轮由于种种条件受限,没有被缓存出去,所以就没有被remove掉.
  • 第二种情况,此缓存块已经被缓存到DataNode上,后来经过DataNode的cacheBlockReport又上报到CacheManager的缓存列表种了.而CacheReplicationMonitor处理的就是CacheManager种的CacheBlocks.

那么问题又来了,既然CacheBlocks已经包含已经缓存的块了,是否会造成Block块重复缓存的现象,造成内存的浪费呢?在下个部分rescanCachedBlockMap种给了我们答案.

第三部分,rescanCachedBlockMap的过程是resan内部3个方法种逻辑处理最为复杂的.下面分段来分析.

首先会做一些前期的操作,如下

  private void rescanCachedBlockMap() {
    // Remove pendingCached blocks that will make DN out-of-capacity.
    // 移除DN中的那些会耗尽DN缓存空间的待缓存块,
    // ...
    // 遍历目标缓存块列表
    for (Iterator<CachedBlock> cbIter = cachedBlocks.iterator();
        cbIter.hasNext(); ) {
      scannedBlocks++;
      CachedBlock cblock = cbIter.next();
      // 获取目标缓存块不同缓存状态的节点列表
      List<DatanodeDescriptor> pendingCached =
          cblock.getDatanodes(Type.PENDING_CACHED);
      List<DatanodeDescriptor> cached =
          cblock.getDatanodes(Type.CACHED);
      List<DatanodeDescriptor> pendingUncached =
          cblock.getDatanodes(Type.PENDING_UNCACHED);
      ...

然后根据上述当前缓存块的各个不同缓存状态的信息,来计算对于当前块的缓存数目信息,进行下面2个部分的处理

      ...
      // 如果当前缓存数已经满足需要缓存的数量,则删除当前准备缓存的块
      if (numCached >= neededCached) {
        // If we have enough replicas, drop all pending cached.
        for (Iterator<DatanodeDescriptor> iter = pendingCached.iterator();
            iter.hasNext(); ) {
          DatanodeDescriptor datanode = iter.next();
          datanode.getPendingCached().remove(cblock);
          iter.remove();
          LOG.trace("Block {}: removing from PENDING_CACHED for node {} "
                  + "because we already have {} cached replicas and we only" +
                  " need {}",
              cblock.getBlockId(), datanode.getDatanodeUuid(), numCached,
              neededCached
          );
        }
      }
      // 如果当前缓存块还未达到目标需要的缓存数,则移动待unCache的Block
      if (numCached < neededCached) {
        // If we don't have enough replicas, drop all pending uncached.
        for (Iterator<DatanodeDescriptor> iter = pendingUncached.iterator();
            iter.hasNext(); ) {
          DatanodeDescriptor datanode = iter.next();
          datanode.getPendingUncached().remove(cblock);
          iter.remove();
          LOG.trace("Block {}: removing from PENDING_UNCACHED for node {} "
                  + "because we only have {} cached replicas and we need " +
                  "{}", cblock.getBlockId(), datanode.getDatanodeUuid(),
              numCached, neededCached
          );
        }
      }

然后添加额外一定数目还需要cache的block或还需要unCached的Block

      if (neededUncached > 0) {
        // 添加需要unCache数目的Block
        addNewPendingUncached(neededUncached, cblock, cached,
            pendingUncached);
      } else {
        int additionalCachedNeeded = neededCached -
            (numCached + pendingCached.size());
        // 同时添加剩余数目的缓存块到pendingCached列表种
        if (additionalCachedNeeded > 0) {
          addNewPendingCached(additionalCachedNeeded, cblock, cached,
              pendingCached);
        }
      }

如果前面的条件都已经满足了,则当前遍历的目标CacheBlock会被remove掉

      // 如果任何条件都满足了,则把目标缓存块进行移除
      if ((neededCached == 0) &&
          pendingUncached.isEmpty() &&
          pendingCached.isEmpty()) {
        // we have nothing more to do with this block.
        LOG.trace("Block {}: removing from cachedBlocks, since neededCached "
                + "== 0, and pendingUncached and pendingCached are empty.",
            cblock.getBlockId()
        );
        cbIter.remove();
      }

以上所有的比较核心是neededCached,而这个值本质上就是缓存目标块的自身副本数.所以看完了这部分的过程,之前提出的重复缓存的问题自然也就解决了.下面是Rescan的过程图:

这里写图片描述

HDFS CacheAdmin命令使用


最后一个模块介绍HDFS专门针对缓存块操作的相关命令使用,这些命令都集中在hdfs cacheadmin命令下,在hadoop客户端中输入如下指令,就会弹出所有使用命令:

$ hdfs cacheadmin
Usage: bin/hdfs cacheadmin [COMMAND]
          [-addDirective -path <path> -pool <pool-name> [-force] [-replication <replication>] [-ttl <time-to-live>]]
          [-modifyDirective -id <id> [-path <path>] [-force] [-replication <replication>] [-pool <pool-name>] [-ttl <time-to-live>]]
          [-listDirectives [-stats] [-path <path>] [-pool <pool>] [-id <id>]
          [-removeDirective <id>]
          [-removeDirectives -path <path>]
          [-addPool <name> [-owner <owner>] [-group <group>] [-mode <mode>] [-limit <limit>] [-maxTtl <maxTtl>]
          [-modifyPool <name> [-owner <owner>] [-group <group>] [-mode <mode>] [-limit <limit>] [-maxTtl <maxTtl>]]
          [-removePool <name>]
          [-listPools [-stats] [<name>]]
          [-help <command-name>]

以上命令中除了最后一个-help帮助命令之外的其余9个命令都是与缓存操作相关的命令.所以可以分为2大类,1个是CachePool相关的,另1个是CacheDirective相关的,结构图如下

这里写图片描述

下面演示一下我在测试集群中的操作:

首先,我需要新建一个CachePool

$ hdfs cacheadmin -addPool zhexuan_test_pool
Successfully added cache pool zhexuan_test_pool.

然后用listPool显示一下是否创建成功

$ hdfs cacheadmin -listPools
Found 1 result.
NAME               OWNER  GROUP  MODE            LIMIT  MAXTTL
zhexuan_test_pool  data   data   rwxr-xr-x   unlimited   never

然后我需要挑选一个目标缓存的文件或目录,比如下面这个临时文件

-rwx------   2 zhexuan supergroup        781 2016-04-15 10:51 /tmp/zhexuan_file

调用addCacheDirective命令带上必要的参数加入当刚刚我建立的test_pool缓存池中.

$ hdfs cacheadmin -addDirective  -path /tmp/zhexuan_file -pool zhexuan_test_pool
Added cache directive 1

同样进行list查询

$ hdfs cacheadmin -listDirectives -pool zhexuan_test_pool -stats
Found 1 entry
 ID POOL                REPL EXPIRY  PATH                BYTES_NEEDED  BYTES_CACHED  FILES_NEEDED  FILES_CACHED
  1 zhexuan_test_pool      1 never   /tmp/zhexuan_file            781             0             1             0

以上这些添加cachePool,cacheDirective的操作都结束了之后是否就意味着操作结束了呢,No!,其实还有一步很重要的操作,就是开启DataNoded的缓存功能,默认是关闭的.需要配置此属性值

<property>
  <name>dfs.datanode.max.locked.memory</name>
  <value>0</value>
  <description>
    The amount of memory in bytes to use for caching of block replicas in
    memory on the datanode. The datanode's maximum locked memory soft ulimit
    (RLIMIT_MEMLOCK) must be set to at least this value, else the datanode
    will abort on startup.

    By default, this parameter is set to 0, which disables in-memory caching.

    If the native libraries are not available to the DataNode, this
    configuration has no effect.
  </description>
</property>

而且要设定能符合机器条件的内存大小,以便缓存块的存放.相信大家合理的使用HDFS Cache缓存功能,一定会对集群的性能提升有很大的帮助作用.

相关链接

1.http://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/CentralizedCacheManagement.html
2.http://blog.csdn.net/androidlushangderen/article/details/50818302

以上是关于HDFS中心缓存管理的主要内容,如果未能解决你的问题,请参考以下文章

HDFS 异构存储实战

大数据之Hadoop的HDFS存储优化—异构存储(冷热数据分离)

HDFS & MapReduce异构存储性能测试白皮书

HDFS之存储优化纠删码原理纠删码案例实操 异构存储(冷热数据分离)

存储虚拟化和异构环境解决方案

走进大数据 | HDFS技术介绍及其相关操作说明