转帖径向分布函数程序与简单说明 (小木虫)

Posted Simyang

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了转帖径向分布函数程序与简单说明 (小木虫)相关的知识,希望对你有一定的参考价值。

径向分布函数g(r)代表了球壳内的平均数密度
技术分享图片
为离中心分子距离为r,体积为 的球壳内的瞬时分子数。
具体参见李如生,《平衡和非平衡统计力学》科学出版社:1995

 

CODE:

SUBROUTINE GR(NSWITCH)
      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
      PARAMETER(NM=40000,PI=3.141592653589793D0,NHIS=100)
      COMMON/LCS/X0(3,-2:2*NM),X(3,-2:2*NM,5),XIN(3,-2:2*NM),
     $XX0(3,-2:2*NM),XX(3,-2:2*NM,5),XXIN(3,-2:2*NM)
      COMMON/MOLEC/LPBC(3),MOLSP,MOLSA,NBX,NBY,NBZ,NPLA,LPBCSM,NC,NN,MC
      COMMON/WALLS/HI(3,3),G(3,3),DH,AREA,VOLUME,SCM(3)
      COMMON/PBCS/HALF,PBCX,PBCY,PBCZ
        COMMON/GR_VAR/ NGR
        DIMENSION H(3,3),GG(0:NHIS),R(0:NHIS)
      EQUIVALENCE(X0(1,-2),H(1,1))
C   *****************************************************************
C      如何确定分子数密度:DEN_IDEAL 
C      取分子总数作为模拟盒中的数密度,可保证采样分子总数=总分子数?
C====================================================================
C         N1=MOLSP+1
C      N2=MOLSP+NC

      DEN_IDEAL=MOLSP  

        G11=G(1,1)
      G22=G(2,2)
      G33=G(3,3)
      G12D=G(1,2)+G(2,1)
      G13D=G(1,3)+G(3,1)
      G23D=G(2,3)+G(3,2)


      IF(NSWITCH.EQ.0)THEN
          NGR=0
          DELR=HALF/NHIS
          DO I=1,NHIS
           GG(I)=0.D0 
           R(I)=0.D0 
          ENDDO 

      ELSE IF(NSWITCH.EQ.1)THEN
         NGR=NGR+1
       DO I=1,MOLSP-1
         DO J=I+1,MOLSP
C====================================================================
C     USE PBC IN X DIRECTION:  SUITABLE FOR PBCX=1
C                              NOT GREAT PROBLEM FOR PBCX=0 
C                              (THIS TIME USUALLY |DELTA X| < HALF)
C====================================================================
          XIJ=X0(1,I)-X0(1,J)
        IF(XIJ.GT.+HALF)XIJ=XIJ-PBCX
        IF(XIJ.LT.-HALF)XIJ=XIJ+PBCX
        YIJ=X0(2,I)-X0(2,J)
        IF(YIJ.GT.+HALF)YIJ=YIJ-PBCY
        IF(YIJ.LT.-HALF)YIJ=YIJ+PBCY
        ZIJ=X0(3,I)-X0(3,J)
        IF(ZIJ.GT.+HALF)ZIJ=ZIJ-PBCZ
        IF(ZIJ.LT.-HALF)ZIJ=ZIJ+PBCZ
        RSQ=XIJ*(G11*XIJ+G12D*YIJ+G13D*ZIJ)+
     $      YIJ*(G22*YIJ+G23D*ZIJ)+G33*ZIJ*ZIJ
          RRR=SQRT(RSQ)
          RRR=RRR/H(1,1)
C====================================================================
C      以上用数组G和H的结果与下同
C      RRR=SQRT(XIJ**2+YIJ**2+ZIJ**2)
C      G11=H(1,1)**2
C====================================================================
          IF(RRR.LT.HALF)THEN
           IG=INT(RRR/DELR)
           GG(IG)=GG(IG)+2
          ENDIF
       ENDDO
         ENDDO

      ELSE IF(NSWITCH.EQ.2)THEN
        DO I=1,NHIS
           R(I)=DELR*(I+0.5D0)
        ENDDO
        DO I=1,NHIS
           VB=(4.D0/3.D0)*PI*(((I+1)**3-I**3)*(DELR**3))
           GNID=VB*DEN_IDEAL
           GG(I)=GG(I)/(NGR*MOLSP*GNID)
        ENDDO
        OPEN(UNIT=31,FILE="GR.DAT")
        DO I=1,NHIS
           WRITE(31,*)R(I),GG(I)
        ENDDO
        CLOSE(31)

        ENDIF

        RETURN 
        END
这样的代码看着不够明了。。。。。。

伪代码:

for (int i = 0; i < TOTN - 1; ++i)
  for (int j = i + 1; j < TOTN; ++j) {
    double dij = sqrt( pow(Pos[0]-Pos[j][0], 2) + pow(Pos[1]-Pos[j][1], 2) + pow(Pos[2]-Pos[j][2], 2));
    int kbin = func(dij); // dij所对应的bin的序号
    g(kbin) += 2;
  }
  // normalize
  for (int k = 0; k < NBIN; ++k)
    g(k) /= 4.0 * PI * r(k) * r(k) * dr * RHO; // r 为第k个bin所对应的距离值

calculate radial distribution function in molecular dynamics (转载科学网樊哲勇

Here are the computer codes for this article:  

md_rdf.cpp

find_rdf.m

test_rdf.m    

 

         Calculating radial distribution function in molecular dynamics

技术分享图片

 

First I recommend a very good book on molecular dynamics (MD) simulation: the book entitled "Molecular dynamics simulation: Elementary methods" by J. M. Haile. I read this book 7 years ago when I started to learn MD simulation, and recently I enjoyed a second reading of this fantastic book. If a beginner askes me which book he/she should read about MD, I will only recommend this. This is THE BEST introductory book on MD. It tells you what is model, what is simulation, what is MD simulation, and what is the correct attitude for doing MD simulations.

 

In my last blog article, I have presented a Matlab code for calculating velocity autocorrelation function (VACF) and phonon density of states (PDOS) from saved velocity data. In this article, I will present a Matlab code for calculating the radial distribution function (RDF) from saved position data. The relevant definition and algorithm are nicely presented in Section 6.4 and Appendix A of Haile‘s book. Here I only present a C code for doing MD simulation and a Matlab code for calculating and plotting the RDF. We aim to reproduce Fig. 6.22 in Haile‘s book!

 

Step 1.

Use the C code provided above to do an MD simulation. Note that I have used a different unit systems than that used in Haile‘s book (he used the LJ unit system). This code only takes 14 seconds to run in my desktop. Here are my position data (there are 100 frames and each frame has 256 atoms):

r.txt

 

Step 2.

Write a Matlab function which can calculate the RDF for one frame of positions:

 

function [g] = find_rdf(r, L, pbc, Ng, rc)

 

% determine some parameters

N = size(r, 1);         % number of particles

L_times_pbc = L .* pbc; % deal with boundary conditions

rho = N / prod(L);      % global particle density

dr = rc / Ng;           % bin size

 

% accumulate

g = zeros(Ng, 1);

for n1 = 1 : (N - 1)                               % sum over the atoms

   for n2 = (n1 + 1) : N                          % skipping half of the pairs

      r12 = r(n2, :) - r(n1, :);                  % position difference vector

      r12 = r12 - round(r12 ./L ) .* L_times_pbc; % minimum image convention

      d12 = sqrt(sum(r12 .* r12));                % distance

      if d12 < rc                                 % there is a cutoff

          index = ceil(d12 / dr);                % bin index

          g(index) = g(index) + 1;                % accumulate

      end

  end

end

 

% normalize

for n = 1 : Ng

   g(n) = g(n) / N * 2;           % 2 because half of the pairs have been skipped

   dV = 4 * pi * (dr * n)^2 * dr; % volume of a spherical shell

   g(n) = g(n) / dV;              % now g is the local density

   g(n) = g(n) / rho;             % now g is the RDF

end

 

Step 3.

Write a Matlab script to load the position data, call the function above, and plot the results:

 

clear; close all;

load r.txt; % length in units of Angstrom

 

% parameters from MD simulation

N = 256;                % number of particles

L = 5.60 * [4, 4, 4]; % box size

pbc = [1, 1, 1];        % boundary conditions

 

% number of bins (number of data points in the figure below)

Ng = 100;

 

% parameters determined automatically

rc = min(L) / 2;     % the maximum radius

dr = rc / Ng;        % bin size

Ns = size(r, 1) / N; % number of frames

 

% do the calculations

g = zeros(Ng, 1); % The RDF to be calculated

for n = 1 : Ns

   r1 = r(((n - 1) * N + 1) : (n * N), :); % positions in one frame

   g = g + find_rdf(r1, L, pbc, Ng, rc);    % sum over frames

end

g = g / Ns;                                 % time average in MD

 

% plot the data

r = (1 : Ng) * dr / 3.405;

figure;

plot(r, g, ‘o-‘);

xlim([0, 3.5]);

ylim([0, 3.5]);

xlabel(‘r^{\ast}‘, ‘fontsize‘, 15)

ylabel(‘g(r)‘, ‘fontsize‘, 15)

set(gca, ‘fontsize‘, 15);

 

Here is the figure I obtained:

 

技术分享图片

Does it resemble Fig. 6. 22 in Haile‘s book?











































































































以上是关于转帖径向分布函数程序与简单说明 (小木虫)的主要内容,如果未能解决你的问题,请参考以下文章

生物科研软件(从科研到发文章)(转自小木虫)

neural computation这个期刊怎么样小木虫

关于towhee 回答zhang_jaj的问题-转载小木虫

学术 一个博士的经历(小木虫精华帖,留着细细体会!)

[概率论与数理统计]笔记:3.3 随机向量的函数的分布与数学期望

逆分布函数法生成随机数(指数分布) R语言实现