POJ2043.Area of Polygons
Posted sigongzi
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ2043.Area of Polygons相关的知识,希望对你有一定的参考价值。
原题戳这里
开始一小段时间的POJ计算几何练习计划(估计很快就会被恶心回去)
题解
用一条平行于y轴的扫描线,计算两条扫描线之间多少格子被覆盖了
精度可tm变态了,可能是因为题目要求的关系吧,需要上取整和下取整,可能有一点误差也给算进去了,精度掉的很大
看一下上一次的上边界是哪里,不要重复计算
代码
#include <iostream>
#include <cstdio>
#include <vector>
#include <set>
#include <cstring>
#include <ctime>
#include <map>
#include <algorithm>
#include <cmath>
#define MAXN 100005
#define eps 1e-8
//#define ivorysi
#define PDD pair<db,db>
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long int64;
typedef double db;
int N;
bool dcmp(db a,db b) {
return fabs(a - b) < eps;
}
bool Gter(db a,db b) {
return a > b + eps;
}
struct Point {
db x,y;
Point() {}
Point(db _x,db _y) {
x = _x;y = _y;
}
friend Point operator + (const Point &a,const Point &b) {
return Point(a.x + b.x,a.y + b.y);
}
friend Point operator - (const Point &a,const Point &b) {
return Point(a.x - b.x,a.y - b.y);
}
friend Point operator / (const Point &a,const db &k) {
return Point(a.x / k,a.y / k);
}
friend Point operator * (const Point &a,const db &k) {
return Point(a.x * k,a.y * k);
}
friend db operator * (const Point &a,const Point &b) {
return a.x * b.y - a.y * b.x;
}
}P[205];
db dot(Point a,Point b) {
return a.x * b.x + a.y * b.y;
}
struct Seg {
Point a,b;
Seg() {}
Seg(Point _a,Point _b) {
a = _a;b = _b;
}
}Line[205];
PDD Y[205];
void Solve() {
int ans = 0;
int st = 2000,ed = -2000;
for(int i = 1 ; i <= N ; ++i) {
scanf("%lf%lf",&P[i].x,&P[i].y);
st = min(st,(int)P[i].x);
ed = max(ed,(int)P[i].x);
}
P[N + 1] = P[1];
for(int i = 1 ; i <= N ; ++i) {
if(P[i].x > P[i + 1].x) Line[i] = Seg(P[i + 1],P[i]);
else Line[i] = Seg(P[i],P[i + 1]);
}
for(int i = st ; i <= ed ; ++i) {
int cnt = 0;
for(int j = 1 ; j <= N ; ++j) {
if(Line[j].a.x <= i && Line[j].b.x >= i + 1) {
db a = Line[j].a.y + (i - Line[j].a.x) * (Line[j].b.y - Line[j].a.y) / (Line[j].b.x - Line[j].a.x);
db b = Line[j].a.y + (i - Line[j].a.x + 1) * (Line[j].b.y - Line[j].a.y) / (Line[j].b.x - Line[j].a.x);
Y[++cnt] = mp(a,b);
}
}
sort(Y + 1,Y + cnt + 1);
int last = -4001;
for(int j = 1 ; j <= cnt ; j += 2) {
int f = floor(min(Y[j].fi,Y[j].se));
int c = ceil(max(Y[j + 1].fi,Y[j + 1].se));
f = max(f,last);
ans += c - f;
last = c;
}
}
printf("%d\n",ans);
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
while(scanf("%d",&N) != EOF && N) {
Solve();
}
return 0;
}
以上是关于POJ2043.Area of Polygons的主要内容,如果未能解决你的问题,请参考以下文章
POJ 1389 Area of Simple Polygons 扫描线+线段树面积并
POJ 1389 Area of Simple Polygons | 扫描线
poj1389:Area of Simple Polygons——扫描线线段树题解+全套代码注释
HDU6219/POJ1259 [ICPC2017沈阳]Empty Convex Polygons 最大空凸包
POJ 3592--Instantaneous TransferenceSCC缩点新建图 && SPFA求最长路 && 经典(示例代(代