关于正态总体的样本均值与样本方差的重要结论
Posted 小鱼吻水
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了关于正态总体的样本均值与样本方差的重要结论相关的知识,希望对你有一定的参考价值。
概要
这些结论为参数的假设检验提供了理论基础,非常重要。参考《概率论与数理统计》记录一下。
?
重要定理
?
?? 设 \(x_1,\cdots, x_n\) 是来自正态总体 \(N(\mu, \sigma^2)\) 的样本,其样本均值和样本方差分别为
\begin{align}
\bar{x} &= \frac{1}{n} \sum_{i=1}^n x_i \\
s^2 &= \frac{1}{n-1} \sum_{i=1}^n(x_i - \bar{x})^2
\end{align}
则有
- \(\bar{x}\) 与 \(s^2\) 相互独立
- \(\bar{x} \sim N(\mu, \dfrac{\sigma^2}{n})\)
- \(\frac{(n-1)s^2}{\sigma^2}\sim \mathcal{X}^2(n-1)\)
??证明: 记 \(x=(x_1,\cdots,x_n)^T\),则有
\begin{align}
E(X) = \begin{bmatrix} \mu \\ \vdots \\ \mu \end{bmatrix}, \quad Var(X) = \sigma^2 I
\end{align}
取一个 \(n\) 维正交矩阵 \(A\),其第一行的每一个元素均为 \(1 / \sqrt{n}\),如
\begin{align}
A = \begin{bmatrix} \dfrac{1}{\sqrt{n}} & \dfrac{1}{\sqrt{n}} & \dfrac{1}{\sqrt{n}} & \cdots & \dfrac{1}{\sqrt{n}} \\
\dfrac{1}{\sqrt{2\cdot 1}} & -\dfrac{1}{\sqrt{2\cdot 1}} & 0 & \cdots & 0 \\
\dfrac{1}{\sqrt{3\cdot 2}} & \dfrac{1}{\sqrt{3 \cdot 2}} & -\dfrac{2}{\sqrt{3\cdot 2}} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\dfrac{1}{\sqrt{n(n-1)}} & \dfrac{1}{\sqrt{n(n-1)}} & \dfrac{1}{\sqrt{n(n-1)}} & \cdots & -\dfrac{n-1}{\sqrt{n(n-1)}} \\
\end{bmatrix}
\end{align}
令 \(Y=AX\),则由多维正态分布的性质知 \(Y\) 仍服从 \(n\) 维正态分布,其均值和方差分别为
\begin{align}
E(Y) &= A \cdot E(X) = \begin{bmatrix} \sqrt{n} \mu \\ 0 \\ \vdots \\ 0 \end{bmatrix} \\
Var(Y) &= A\cdot Var(X) \cdot A^T = A \cdot \sigma^2 I \cdot A^T = \sigma^2 AA^T = \sigma^2 I
\end{align}
所以 \(Y=(y_1,\cdots,y_n)^T\) 的各个分量相互独立,且都服从正态分布,其方差均为 \(\sigma^2\),而均值并不完全相同,\(y_1\) 的均值为 \(\sqrt{n}\mu\),而 \(y_2 ,\cdots, y_n\) 的均值为 \(0\)。注意到 \(\bar{x}=\dfrac{1}{\sqrt{n}}y_1\),这就证明了结论 2.
由于 \(\sum_{i=1}^n y_i^2 = Y^TY = X^TA^TAX=\sum_{i=1}^n x_i^2\),故而
\begin{align}
(n-1)\cdot s^2 &= \sum_{i=1}^n (x_i-\bar{x})^2 = \sum_{i=1}^n x_i^2 - (\sqrt{n}\bar{x})^2 \\
&=\sum{i=1}^n y_i^2-y_1^2=\sum_{i=2}^n y_i^2
\end{align}
这就证明了结论 1.
由于 \(y_2,\cdots, y_n\) 独立同分布于 \(N(0,\sigma^2)\),于是
\begin{align}
\frac{(n-1)s^2}{\sigma^2} = \sum_{i=2}^n \left(\frac{y_i}{\sigma} \right)^2 \sim \mathcal{X}^2(n-1)
\end{align}
定理证明完成。
?
重要推论
?
??推论 1: 在上述定理的记号下,有:
\begin{align} \label{e1}
t = \frac{\sqrt{n}(\bar{x}-\mu)}{s} \sim t(n-1)
\end{align}
??证明:由上述定理的结论 2 知:
\begin{align}
\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} = N(0,1)
\end{align}
然后将 \ref{e1} 左端改写为
\begin{align}
\frac{\sqrt{n}(\bar{x}-\mu)}{s} = \dfrac{\dfrac{\bar{x}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\dfrac{(n-1)\cdot s^2 / \sigma^2}{n-1}}}
\end{align}
由于分子是标准正态变量,分母的根号里是自由度为 \(n-1\) 的 \(t\) 变量除以它的自由度,且分子与分母相互独立,由 \(t\) 分布定义可知 \(t \sim t(n-1)\),证毕。
?
??推论 2: 设 \(x_1,x_2,\cdots, x_m\) 是来自 \(N(\mu_1,\sigma_1)\) 的样本,\(y_1,y_2,\cdots, y_n\) 是来自 \(N(\mu_2,\sigma_2)\) 的样本,且此两样本相互独立,记
\begin{align}
s_x^2 = \dfrac{1}{m-1}\sum_{i=1}^m(x_i-\bar{x})^2,\quad s_y^2 = \dfrac{1}{m-1}\sum_{i=1}^n(y_i-\bar{y})^2
\end{align}
其中
\begin{align}
\bar{x}= \frac{1}{m} \sum_{i=1}^m x_i, \quad \bar{y} = \frac{1}{n}\sum_{i=1}^n y_i
\end{align}
则有
\begin{align}
F = \frac{s_x^2 / \sigma_1^2}{s_y^2 / \sigma_2^2} \sim F(m-1, n-1)
\end{align}
特别地,若 \(\sigma_1^2 = \sigma_2^2\),则 \(F = s_x^2 / s_y^2 \sim F(m-1,n-1)\).
?
??证明:由两样本独立可知,\(s_x^2\) 与 \(s_y^2\) 相互独立,且
\begin{align}
\dfrac{(m-1)s_x^2}{\sigma_1^2} \sim \mathcal{X}^2(m-1),\quad \dfrac{(n-1)s_y^2}{\sigma_2^2} \sim \mathcal{X}^2(n-1)
\end{align}
由 \(F\) 分布定义可知 \(F \sim F(m-1,n-1)\).
?
??推论 3: 在上述记号下,设 \(\sigma_1^2 = \sigma_2^2=\sigma^2\),并记
\begin{align}
s_w^2 = \dfrac{(m-1)s_x^2+(n-1)s_y^2}{m+n-2} = \dfrac{\sum_{i=1}^m(x_i-\bar{x})^2 + \sum_{i=1}^n(y_i-\bar{y})^2}{m+n-2}
\end{align}
则
\begin{align}
\dfrac{(\bar{x}-\bar{y} - (\mu_1-\mu_2))}{s_w \sqrt{\dfrac{1}{m}+ \dfrac{1}{n}}} \sim t(m+n-2)
\end{align}
??证明:由 \(\bar{x}\sim N(\mu_1, \sigma^2 / m)\),\(\bar{y}\sim N(\mu_2, \sigma^2 / n)\),\(\bar{x}\) 与 \(\bar{y}\) 独立,故有
\begin{align}
\bar{x}-\bar{y} \sim N \left( \mu_1-\mu_2, \left( \dfrac{1}{m}+\dfrac{1}{n} \right) \sigma^2 \right)
\end{align}
所以
\begin{align}
\dfrac{(\bar{x}-\bar{y} - (\mu_1-\mu_2))}{\sigma \sqrt{\dfrac{1}{m}+ \dfrac{1}{n}}} \sim N(0,1)
\end{align}
由上述定理知,\(\dfrac{(m-1)s_x^2}{\sigma^2}\sim \mathcal{X}^2(m-1)\),\(\dfrac{(n-1)s_y^2}{\sigma^2}\sim \mathcal{X}^2(n-1)\),且它们相互独立,则由可加性知
\begin{align}
\dfrac{(m+n-2)s_w^2}{\sigma^2} = \dfrac{(m-1)s_x^2+(n-1)s_y^2}{\sigma^2} \sim \mathcal{X}^2(m+n-2)
\end{align}
由于 \(\bar{x}-\bar{y}\) 与 \(s_w^2\) 相互独立,根据 \(t\) 分布的定义即可得到结论。
?
?
?
以上是关于关于正态总体的样本均值与样本方差的重要结论的主要内容,如果未能解决你的问题,请参考以下文章