[HAOI2015] 按位或

Posted 蒟蒻JHY

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[HAOI2015] 按位或相关的知识,希望对你有一定的参考价值。

题目描述

刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行位或 (即c++中的 ‘|‘ ) 操作。

选择数字i的概率是p[i]。保证0<=p[i]<=1,Σp[i]=1问期望多少秒后,你手上的数字变成2^n-1。

输入输出格式

输入格式:

第一行输入n表示n个元素,第二行输入2^n个数,第i个数表示选到i-1的概率

 

输出格式:

仅输出一个数表示答案,绝对误差或相对误差不超过1e-6即可算通过。如果无解则要输出INF

 

输入输出样例

输入样例#1: 
2
0.25 0.25 0.25 0.25
输出样例#1: 
2.6666666667

说明

对于100%的数据,n<=20

 

 

   可以说是FMT的板子了,虽然如果你光是背的话是做不出来的hhhh,而且还需要一点期望的知识。

 

    设i秒后数字是 2^n - 1 的概率是 q[i]  ,注意 i-1秒 的 2^n - 1 也同样可以转移到 i 秒 的 2^n - 1。

    那么答案就显然了:Σ i * (q[i] - q[i-1])。

    但是问题随之而来:这个玩意是不是无穷大的啊,毕竟 都有 q[i] > q[i-1] ,且i可以是正无穷啊?

    但实际上这个玩意是收敛的,考虑i很大的时候,q[i] - q[i-1] 趋近于0,就没有贡献了。

 

    但是这个玩意怎么算啊qwq

    先考虑一个简单的问题:如果是求q[i]的话我们怎么求?

    这个比较简单,就是把 p[] 数组 自己卷 i 次,然后 p[2^n - 1]就是 q[i] 啦。。。

    卷?? 当然还得定义乘法,这里的集合乘法 就是 位或 (or)  ,所以如果单独求 q[x] 的话 ,就是FMT的板子啦。。。

    

    但是这个题求的是一坨子q[x]带权加起来,,,这可咋办啊??

    伟大的vfleaking先辈已经在他的论文里告诉了我们,对一个形式幂级数 进行 加减乘除 操作 就相当于 对它的 莫比乌斯变换 进行加减乘除操作。

    而莫比乌斯变换可以把原形式幂级数的卷积直接变成乘法。。。然后这就是个等差+等比数列求和的问题了,请自行手玩hhhh

 

/*
    (p - 1) + 2*(p^2 - p) + 3*(p^3 - p^2) + ....
   = 1/(p-1)  (0<p<1)  or  0  (p==1)
*/
#include<bits/stdc++.h>
#define ll long long
const int maxn=1100005;
#define D double
using namespace std;
const D eps=1e-9;
int N,ci[35];
D f[maxn];

inline void FMT(int F){
	for(int i=0;i<N;i++)
	    for(int j=ci[N]-1;j>=0;j--) if(!(ci[i]&j)) f[ci[i]|j]+=F*f[j];
}

int main(){
	ci[0]=1; for(int i=1;i<=20;i++) ci[i]=ci[i-1]<<1;
	scanf("%d",&N);
	for(int i=0;i<ci[N];i++) scanf("%lf",f+i);
	
	FMT(1),f[ci[N]-1]=0;
	for(int i=ci[N]-2;i>=0;i--){
		if(1-f[i]<eps){
			puts("INF");
			return 0;
		}
		f[i]=1/(f[i]-1);
	}
	FMT(-1);
	
	printf("%.11lf\n",f[ci[N]-1]);
	return 0;
}

  

    

以上是关于[HAOI2015] 按位或的主要内容,如果未能解决你的问题,请参考以下文章

[HAOI2015] 按位或

bzoj4036 / P3175 [HAOI2015]按位或

[HAOI2015]按位或

[HAOI2015]按位或

LOJ#2127. 「HAOI2015」按位或

luogu P3175 [HAOI2015]按位或