Faster_RCNN 1.准备工作

Posted 三年一梦

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Faster_RCNN 1.准备工作相关的知识,希望对你有一定的参考价值。

总结自论文:Faster_RCNN,与Pytorch代码

代码结构:  simple-faster-rcnn-pytorch.py

  • data
    • __init__.py
    • dataset.py
    • util.py
    • voc_dataset.py  
  • misc
    • convert_caffe_pretain.py
    • train_fast.py  
  • model
    • utils
      • nms
        • __init__.py
        • _nms_gpu_post.py
        • build.py
        • non_maximum_suppression.py  
      • __init__.py
      • bbox_tools.py
      • creator_tool.py
      • roi_cupy.py  
    • __init__.py
    • faster_rcnn.py
    • faster_rcnn_vgg16.py
    • region_proposal_network.py
    • roi_module.py  
  • utils
    • __init__.py
    • array_tool.py
    • config.py
    • eval_tool.py
    • vis_tool.py
  • demo.ipynb
  • train.py
  • trainer.py

 

代码中有四个包分别为data、misc、model、utils。最核心的部分在model,包括了nms(非极大值抑制)、RPN网络实现、模型定义等。train.py与trainer.py为训练脚本。

本文主要介绍代码第一部分:data包 与 utils包。

一. data包

首先下载VOC2007数据集:

技术分享图片
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
View Code

并将三个压缩包解压至一个文件夹(名为VOCdevkit)下:

技术分享图片
tar xvf VOCtrainval_06-Nov-2007.tar
tar xvf VOCtest_06-Nov-2007.tar
tar xvf VOCdevkit_08-Jun-2007.tar
View Code

 

1.  utils.py

技术分享图片
import numpy as np
from PIL import Image
import random


def read_image(path, dtype=np.float32, color=True):
    """Read an image from a file.

    This function reads an image from given file. The image is CHW format and
    the range of its value is :math:`[0, 255]`. If :obj:`color = True`, the
    order of the channels is RGB.

    Args:
        path (str): A path of image file.
        dtype: The type of array. The default value is :obj:`~numpy.float32`.
        color (bool): This option determines the number of channels.
            If :obj:`True`, the number of channels is three. In this case,
            the order of the channels is RGB. This is the default behaviour.
            If :obj:`False`, this function returns a grayscale image.

    Returns:
        ~numpy.ndarray: An image.
    """

    f = Image.open(path)
    try:
        if color:
            img = f.convert(RGB)
        else:
            img = f.convert(P)
        img = np.asarray(img, dtype=dtype)
    finally:
        if hasattr(f, close):
            f.close()

    if img.ndim == 2:
        # reshape (H, W) -> (1, H, W)
        return img[np.newaxis]
    else:
        # transpose (H, W, C) -> (C, H, W)
        return img.transpose((2, 0, 1))


def resize_bbox(bbox, in_size, out_size):
    """Resize bounding boxes according to image resize.

    The bounding boxes are expected to be packed into a two dimensional
    tensor of shape :math:`(R, 4)`, where :math:`R` is the number of
    bounding boxes in the image. The second axis represents attributes of
    the bounding box. They are :math:`(y_{min}, x_{min}, y_{max}, x_{max})`,
    where the four attributes are coordinates of the top left and the
    bottom right vertices.

    Args:
        bbox (~numpy.ndarray): An array whose shape is :math:`(R, 4)`.
            :math:`R` is the number of bounding boxes.
        in_size (tuple): A tuple of length 2. The height and the width
            of the image before resized.
        out_size (tuple): A tuple of length 2. The height and the width
            of the image after resized.

    Returns:
        ~numpy.ndarray:
        Bounding boxes rescaled according to the given image shapes.

    """
    bbox = bbox.copy()
    y_scale = float(out_size[0]) / in_size[0]
    x_scale = float(out_size[1]) / in_size[1]
    bbox[:, 0] = y_scale * bbox[:, 0]
    bbox[:, 2] = y_scale * bbox[:, 2]
    bbox[:, 1] = x_scale * bbox[:, 1]
    bbox[:, 3] = x_scale * bbox[:, 3]
    return bbox


def flip_bbox(bbox, size, y_flip=False, x_flip=False):
    """Flip bounding boxes accordingly.

    The bounding boxes are expected to be packed into a two dimensional
    tensor of shape :math:`(R, 4)`, where :math:`R` is the number of
    bounding boxes in the image. The second axis represents attributes of
    the bounding box. They are :math:`(y_{min}, x_{min}, y_{max}, x_{max})`,
    where the four attributes are coordinates of the top left and the
    bottom right vertices.

    Args:
        bbox (~numpy.ndarray): An array whose shape is :math:`(R, 4)`.
            :math:`R` is the number of bounding boxes.
        size (tuple): A tuple of length 2. The height and the width
            of the image before resized.
        y_flip (bool): Flip bounding box according to a vertical flip of
            an image.
        x_flip (bool): Flip bounding box according to a horizontal flip of
            an image.

    Returns:
        ~numpy.ndarray:
        Bounding boxes flipped according to the given flips.

    """
    H, W = size
    bbox = bbox.copy()
    if y_flip:
        y_max = H - bbox[:, 0]
        y_min = H - bbox[:, 2]
        bbox[:, 0] = y_min
        bbox[:, 2] = y_max
    if x_flip:
        x_max = W - bbox[:, 1]
        x_min = W - bbox[:, 3]
        bbox[:, 1] = x_min
        bbox[:, 3] = x_max
    return bbox


def crop_bbox(
        bbox, y_slice=None, x_slice=None,
        allow_outside_center=True, return_param=False):
    """Translate bounding boxes to fit within the cropped area of an image.

    This method is mainly used together with image cropping.
    This method translates the coordinates of bounding boxes like
    :func:`data.util.translate_bbox`. In addition,
    this function truncates the bounding boxes to fit within the cropped area.
    If a bounding box does not overlap with the cropped area,
    this bounding box will be removed.

    The bounding boxes are expected to be packed into a two dimensional
    tensor of shape :math:`(R, 4)`, where :math:`R` is the number of
    bounding boxes in the image. The second axis represents attributes of
    the bounding box. They are :math:`(y_{min}, x_{min}, y_{max}, x_{max})`,
    where the four attributes are coordinates of the top left and the
    bottom right vertices.

    Args:
        bbox (~numpy.ndarray): Bounding boxes to be transformed. The shape is
            :math:`(R, 4)`. :math:`R` is the number of bounding boxes.
        y_slice (slice): The slice of y axis.
        x_slice (slice): The slice of x axis.
        allow_outside_center (bool): If this argument is :obj:`False`,
            bounding boxes whose centers are outside of the cropped area
            are removed. The default value is :obj:`True`.
        return_param (bool): If :obj:`True`, this function returns
            indices of kept bounding boxes.

    Returns:
        ~numpy.ndarray or (~numpy.ndarray, dict):

        If :obj:`return_param = False`, returns an array :obj:`bbox`.

        If :obj:`return_param = True`,
        returns a tuple whose elements are :obj:`bbox, param`.
        :obj:`param` is a dictionary of intermediate parameters whose
        contents are listed below with key, value-type and the description
        of the value.

        * **index** (*numpy.ndarray*): An array holding indices of used             bounding boxes.

    """

    t, b = _slice_to_bounds(y_slice)
    l, r = _slice_to_bounds(x_slice)
    crop_bb = np.array((t, l, b, r))

    if allow_outside_center:
        mask = np.ones(bbox.shape[0], dtype=bool)
    else:
        center = (bbox[:, :2] + bbox[:, 2:]) / 2
        mask = np.logical_and(crop_bb[:2] <= center, center < crop_bb[2:])             .all(axis=1)

    bbox = bbox.copy()
    bbox[:, :2] = np.maximum(bbox[:, :2], crop_bb[:2])
    bbox[:, 2:] = np.minimum(bbox[:, 2:], crop_bb[2:])
    bbox[:, :2] -= crop_bb[:2]
    bbox[:, 2:] -= crop_bb[:2]

    mask = np.logical_and(mask, (bbox[:, :2] < bbox[:, 2:]).all(axis=1))
    bbox = bbox[mask]

    if return_param:
        return bbox, {index: np.flatnonzero(mask)}
    else:
        return bbox


def _slice_to_bounds(slice_):
    if slice_ is None:
        return 0, np.inf

    if slice_.start is None:
        l = 0
    else:
        l = slice_.start

    if slice_.stop is None:
        u = np.inf
    else:
        u = slice_.stop

    return l, u


def translate_bbox(bbox, y_offset=0, x_offset=0):
    """Translate bounding boxes.

    This method is mainly used together with image transforms, such as padding
    and cropping, which translates the left top point of the image from
    coordinate :math:`(0, 0)` to coordinate
    :math:`(y, x) = (y_{offset}, x_{offset})`.

    The bounding boxes are expected to be packed into a two dimensional
    tensor of shape :math:`(R, 4)`, where :math:`R` is the number of
    bounding boxes in the image. The second axis represents attributes of
    the bounding box. They are :math:`(y_{min}, x_{min}, y_{max}, x_{max})`,
    where the four attributes are coordinates of the top left and the
    bottom right vertices.

    Args:
        bbox (~numpy.ndarray): Bounding boxes to be transformed. The shape is
            :math:`(R, 4)`. :math:`R` is the number of bounding boxes.
        y_offset (int or float): The offset along y axis.
        x_offset (int or float): The offset along x axis.

    Returns:
        ~numpy.ndarray:
        Bounding boxes translated according to the given offsets.

    """

    out_bbox = bbox.copy()
    out_bbox[:, :2] += (y_offset, x_offset)
    out_bbox[:, 2:] += (y_offset, x_offset)

    return out_bbox


def random_flip(img, y_random=False, x_random=False,
                return_param=False, copy=False):
    """Randomly flip an image in vertical or horizontal direction.

    Args:
        img (~numpy.ndarray): An array that gets flipped. This is in
            CHW format.
        y_random (bool): Randomly flip in vertical direction.
        x_random (bool): Randomly flip in horizontal direction.
        return_param (bool): Returns information of flip.
        copy (bool): If False, a view of :obj:`img` will be returned.

    Returns:
        ~numpy.ndarray or (~numpy.ndarray, dict):

        If :obj:`return_param = False`,
        returns an array :obj:`out_img` that is the result of flipping.

        If :obj:`return_param = True`,
        returns a tuple whose elements are :obj:`out_img, param`.
        :obj:`param` is a dictionary of intermediate parameters whose
        contents are listed below with key, value-type and the description
        of the value.

        * **y_flip** (*bool*): Whether the image was flipped in the            vertical direction or not.
        * **x_flip** (*bool*): Whether the image was flipped in the            horizontal direction or not.

    """
    y_flip, x_flip = False, False
    if y_random:
        y_flip = random.choice([True, False])
    if x_random:
        x_flip = random.choice([True, False])

    if y_flip:
        img = img[:, ::-1, :]
    if x_flip:
        img = img[:, :, ::-1]

    if copy:
        img = img.copy()

    if return_param:
        return img, {y_flip: y_flip, x_flip: x_flip}
    else:
        return img
View Code

工具文件:

函数read_image首先用PIL将图像读入为RGB格式或单通道格式彩图,然后分别转为C*H*W与1*H*W格式。图像范围【0,255】。

函数resize_bbox将形状为(R,4)的bbox按照输入与输出的height、weight进行resize。

函数flip_bbox将根据是否翻转实现对输入bbox的横向与纵向翻转。

函数crop_bbox将bbox适应于图像的裁剪区域。

函数translate_bbox根据输入的偏移量,进行水平或竖直偏移。

函数random_flip将图片(CHW格式)随机水平或竖直反转:

  • img = img[:, ::-1, :]     竖直翻转
  • img = img[:, :, ::-1]     水平翻转

 

2.  voc_dataset.py

技术分享图片
import os
import xml.etree.ElementTree as ET

import numpy as np

from .util import read_image


class VOCBboxDataset:
    """Bounding box dataset for PASCAL `VOC`_.

    .. _`VOC`: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

    The index corresponds to each image.

    When queried by an index, if :obj:`return_difficult == False`,
    this dataset returns a corresponding
    :obj:`img, bbox, label`, a tuple of an image, bounding boxes and labels.
    This is the default behaviour.
    If :obj:`return_difficult == True`, this dataset returns corresponding
    :obj:`img, bbox, label, difficult`. :obj:`difficult` is a boolean array
    that indicates whether bounding boxes are labeled as difficult or not.

    The bounding boxes are packed into a two dimensional tensor of shape
    :math:`(R, 4)`, where :math:`R` is the number of bounding boxes in
    the image. The second axis represents attributes of the bounding box.
    They are :math:`(y_{min}, x_{min}, y_{max}, x_{max})`, where the
    four attributes are coordinates of the top left and the bottom right
    vertices.

    The labels are packed into a one dimensional tensor of shape :math:`(R,)`.
    :math:`R` is the number of bounding boxes in the image.
    The class name of the label :math:`l` is :math:`l` th element of
    :obj:`VOC_BBOX_LABEL_NAMES`.

    The array :obj:`difficult` is a one dimensional boolean array of shape
    :math:`(R,)`. :math:`R` is the number of bounding boxes in the image.
    If :obj:`use_difficult` is :obj:`False`, this array is
    a boolean array with all :obj:`False`.

    The type of the image, the bounding boxes and the labels are as follows.

    * :obj:`img.dtype == numpy.float32`
    * :obj:`bbox.dtype == numpy.float32`
    * :obj:`label.dtype == numpy.int32`
    * :obj:`difficult.dtype == numpy.bool`

    Args:
        data_dir (string): Path to the root of the training data. 
            i.e. "/data/image/voc/VOCdevkit/VOC2007/"
        split ({‘train‘, ‘val‘, ‘trainval‘, ‘test‘}): Select a split of the
            dataset. :obj:`test` split is only available for
            2007 dataset.
        year ({‘2007‘, ‘2012‘}): Use a dataset prepared for a challenge
            held in :obj:`year`.
        use_difficult (bool): If :obj:`True`, use images that are labeled as
            difficult in the original annotation.
        return_difficult (bool): If :obj:`True`, this dataset returns
            a boolean array
            that indicates whether bounding boxes are labeled as difficult
            or not. The default value is :obj:`False`.

    """

    def __init__(self, data_dir, split=trainval,
                 use_difficult=False, return_difficult=False,
                 ):

        # if split not in [‘train‘, ‘trainval‘, ‘val‘]:
        #     if not (split == ‘test‘ and year == ‘2007‘):
        #         warnings.warn(
        #             ‘please pick split from \‘train\‘, \‘trainval\‘, \‘val\‘‘
        #             ‘for 2012 dataset. For 2007 dataset, you can pick \‘test\‘‘
        #             ‘ in addition to the above mentioned splits.‘
        #         )
        id_list_file = os.path.join(
            data_dir, ImageSets/Main/{0}.txt.format(split))

        self.ids = [id_.strip() for id_ in open(id_list_file)]
        self.data_dir = data_dir
        self.use_difficult = use_difficult
        self.return_difficult = return_difficult
        self.label_names = VOC_BBOX_LABEL_NAMES

    def __len__(self):
        return len(self.ids)

    def get_example(self, i):
        """Returns the i-th example.

        Returns a color image and bounding boxes. The image is in CHW format.
        The returned image is RGB.

        Args:
            i (int): The index of the example.

        Returns:
            tuple of an image and bounding boxes

        """
        id_ = self.ids[i]
        anno = ET.parse(
            os.path.join(self.data_dir, Annotations, id_ + .xml))
        bbox = list()
        label = list()
        difficult = list()
        for obj in anno.findall(object):
            # when in not using difficult split, and the object is
            # difficult, skipt it.
            if not self.use_difficult and int(obj.find(difficult).text) == 1:
                continue

            difficult.append(int(obj.find(difficult).text))
            bndbox_anno = obj.find(bndbox)
            # subtract 1 to make pixel indexes 0-based
            bbox.append([
                int(bndbox_anno.find(tag).text) - 1
                for tag in (ymin, xmin, ymax, xmax)])
            name = obj.find(name).text.lower().strip()
            label.append(VOC_BBOX_LABEL_NAMES.index(name))
        bbox = np.stack(bbox).astype(np.float32)
        label = np.stack(label).astype(np.int32)
        # When `use_difficult==False`, all elements in `difficult` are False.
        difficult = np.array(difficult, dtype=np.bool).astype(np.uint8)  # PyTorch don‘t support np.bool

        # Load a image
        img_file = os.path.join(self.data_dir, JPEGImages, id_ + .jpg)
        img = read_image(img_file, color=True)

        # if self.return_difficult:
        #     return img, bbox, label, difficult
        return img, bbox, label, difficult

    __getitem__ = get_example


VOC_BBOX_LABEL_NAMES = (
    aeroplane,
    bicycle,
    bird,
    boat,
    bottle,
    bus,
    car,
    cat,
    chair,
    cow,
    diningtable,
    dog,
    horse,
    motorbike,
    person,
    pottedplant,
    sheep,
    sofa,
    train,
    tvmonitor)
View Code

实现VOC2007数据类:共9963张图片

VOC2007包含{‘train‘, ‘val‘, ‘trainval‘, ‘test‘},共20类,加背景21类。四个集合图片数分别为2501, 2510,5011,4952(trainval=train+val)。VOC2012无test集。

训练时使用trainval数据集,测试时使用test数据集。

每张图像的标注都在xml文件中:

技术分享图片
<annotation>
    <folder>VOC2007</folder>
    <filename>000001.jpg</filename>
    <source>
        <database>The VOC2007 Database</database>
        <annotation>PASCAL VOC2007</annotation>
        <image>flickr</image>
        <flickrid>341012865</flickrid>
    </source>
    <owner>
        <flickrid>Fried Camels</flickrid>
        <name>Jinky the Fruit Bat</name>
    </owner>
    <size>
        <width>353</width>
        <height>500</height>
        <depth>3</depth>
    </size>
    <segmented>0</segmented>
    <object>
        <name>dog</name>
        <pose>Left</pose>
        <truncated>1</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>48</xmin>
            <ymin>240</ymin>
            <xmax>195</xmax>
            <ymax>371</ymax>
        </bndbox>
    </object>
    <object>
        <name>person</name>
        <pose>Left</pose>
        <truncated>1</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>8</xmin>
            <ymin>12</ymin>
            <xmax>352</xmax>
            <ymax>498</ymax>
        </bndbox>
    </object>
</annotation>
View Code

每个xml文件给出了此图像的size,每个bbox坐标、bbox所含label、以及是否是difficult。

类 VOCBboxDataset继承自Object基类,实例化该类时只需提供VOC数据集路径即可。

类 VOCBboxDataset的方法只有一个,即返回第i张图片的信息(图像、bbox、label、difficult)

 

3.  dataset.py

技术分享图片
import torch as t
from .voc_dataset import VOCBboxDataset
from skimage import transform as sktsf
from torchvision import transforms as tvtsf
from . import util
import numpy as np
from utils.config import opt


def inverse_normalize(img):
    if opt.caffe_pretrain:
        img = img + (np.array([122.7717, 115.9465, 102.9801]).reshape(3, 1, 1))
        return img[::-1, :, :]
    # approximate un-normalize for visualize
    return (img * 0.225 + 0.45).clip(min=0, max=1) * 255


def pytorch_normalze(img):
    """
    https://github.com/pytorch/vision/issues/223
    return appr -1~1 RGB
    """
    normalize = tvtsf.Normalize(mean=[0.485, 0.456, 0.406],
                                std=[0.229, 0.224, 0.225])
    img = normalize(t.from_numpy(img))
    return img.numpy()


def caffe_normalize(img):
    """
    return appr -125-125 BGR
    """
    img = img[[2, 1, 0], :, :]  # RGB-BGR
    img = img * 255
    mean = np.array([122.7717, 115.9465, 102.9801]).reshape(3, 1, 1)
    img = (img - mean).astype(np.float32, copy=True)
    return img


def preprocess(img, min_size=600, max_size=1000):
    """Preprocess an image for feature extraction.

    The length of the shorter edge is scaled to :obj:`self.min_size`.
    After the scaling, if the length of the longer edge is longer than
    :param min_size:
    :obj:`self.max_size`, the image is scaled to fit the longer edge
    to :obj:`self.max_size`.

    After resizing the image, the image is subtracted by a mean image value
    :obj:`self.mean`.

    Args:
        img (~numpy.ndarray): An image. This is in CHW and RGB format.
            The range of its value is :math:`[0, 255]`.

    Returns:
        ~numpy.ndarray: A preprocessed image.

    """
    C, H, W = img.shape
    scale1 = min_size / min(H, W)
    scale2 = max_size / max(H, W)
    scale = min(scale1, scale2)
    img = img / 255.
    img = sktsf.resize(img, (C, H * scale, W * scale), mode=reflect)
    # both the longer and shorter should be less than
    # max_size and min_size
    if opt.caffe_pretrain:
        normalize = caffe_normalize
    else:
        normalize = pytorch_normalze
    return normalize(img)


class Transform(object):

    def __init__(self, min_size=600, max_size=1000):
        self.min_size = min_size
        self.max_size = max_size

    def __call__(self, in_data):
        img, bbox, label = in_data
        _, H, W = img.shape
        img = preprocess(img, self.min_size, self.max_size)
        _, o_H, o_W = img.shape
        scale = o_H / H
        bbox = util.resize_bbox(bbox, (H, W), (o_H, o_W))

        # horizontally flip
        img, params = util.random_flip(
            img, x_random=True, return_param=True)
        bbox = util.flip_bbox(
            bbox, (o_H, o_W), x_flip=params[x_flip])

        return img, bbox, label, scale


class Dataset:
    def __init__(self, opt):
        self.opt = opt
        self.db = VOCBboxDataset(opt.voc_data_dir)
        self.tsf = Transform(opt.min_size, opt.max_size)

    def __getitem__(self, idx):
        ori_img, bbox, label, difficult = self.db.get_example(idx)

        img, bbox, label, scale = self.tsf((ori_img, bbox, label))
        # TODO: check whose stride is negative to fix this instead copy all
        # some of the strides of a given numpy array are negative.
        return img.copy(), bbox.copy(), label.copy(), scale

    def __len__(self):
        return len(self.db)


class TestDataset:
    def __init__(self, opt, split=test, use_difficult=True):
        self.opt = opt
        self.db = VOCBboxDataset(opt.voc_data_dir, split=split, use_difficult=use_difficult)

    def __getitem__(self, idx):
        ori_img, bbox, label, difficult = self.db.get_example(idx)
        img = preprocess(ori_img)
        return img, ori_img.shape[1:], bbox, label, difficult

    def __len__(self):
        return len(self.db)
View Code

制作数据

函数inverse_normalize实现对caffe与torchvision版本的去正则化。因为可以利用caffe版本的vgg预训练权重,也可利用torchvision版本的预训练权重。只不过后者结果略微逊色于前者。

函数pytorch_normalze实现对pytorch模型输入图像的标准化:由【0,255】的RGB转为【0,1】的RGB再正则化为【-1,1】的RGB。

函数caffe_normalze实现对caffe模型输入图像的标准化:由【0,255】的RGB转为【0,1】的RGB再正则化为【-125,125】的BGR。

函数preprocess实现对图像的预处理:由read_image函数读入的图像为CHW的【0,255】格式,这里首先除以255, 再按照论文长边不超1000,短边不超600。按此比例缩放。然后调用pytorch_normalze或者caffe_normalze对图像进行正则化。

Transform实现了预处理,定义了__call__方法,在__call__方法中利用函数preprocess对图像预处理,并将bbox按照图像缩放的尺度等比例缩放。然后随机对图像与bbox同时进行水平翻转。

Dataset实现对训练集样本的生成, 即trainval。__getitem__方法利用VOCBboxDataset类来生成一张训练图片,并调用Trandform类处理。返回处理后的图像,bbox,label,scale。

TestDataset实现对测试机样本的生成,即test。__getitem__方法利用VOCBboxDataset类来生成一张测试图片,不同于训练的是调用preprocess函数处理。也即没有对bbox进行相应resize,而是返回处理前的图像尺寸。

 

二. utils包

1.  array_tool.py

技术分享图片
"""
tools to convert specified type
"""
import torch as t
import numpy as np


def tonumpy(data):
    if isinstance(data, np.ndarray):
        return data
    if isinstance(data, t._TensorBase):
        return data.cpu().numpy()
    if isinstance(data, t.autograd.Variable):
        return tonumpy(data.data)


def totensor(data, cuda=True):
    if isinstance(data, np.ndarray):
        tensor = t.from_numpy(data)
    if isinstance(data, t._TensorBase):
        tensor = data
    if isinstance(data, t.autograd.Variable):
        tensor = data.data
    if cuda:
        tensor = tensor.cuda()
    return tensor


def tovariable(data):
    if isinstance(data, np.ndarray):
        return tovariable(totensor(data))
    if isinstance(data, t._TensorBase):
        return t.autograd.Variable(data)
    if isinstance(data, t.autograd.Variable):
        return data
    else:
        raise ValueError("UnKnow data type: %s, input should be {np.ndarray,Tensor,Variable}" %type(data))


def scalar(data):
    if isinstance(data, np.ndarray):
        return data.reshape(1)[0]
    if isinstance(data, t._TensorBase):
        return data.view(1)[0]
    if isinstance(data, t.autograd.Variable):
        return data.data.view(1)[0]
View Code

类别转换脚本,实现tensor、numpy、Variable之间的转换。

 

2.  config.py

技术分享图片
from pprint import pprint


# Default Configs for training
# NOTE that, config items could be overwriten by passing argument through command line.
# e.g. --voc-data-dir=‘./data/‘

class Config:
    # data
    voc_data_dir = /home/cy/.chainer/dataset/pfnet/chainercv/voc/VOCdevkit/VOC2007/
    min_size = 600  # image resize
    max_size = 1000 # image resize
    num_workers = 8
    test_num_workers = 8

    # sigma for l1_smooth_loss
    rpn_sigma = 3.
    roi_sigma = 1.

    # param for optimizer
    # 0.0005 in origin paper but 0.0001 in tf-faster-rcnn
    weight_decay = 0.0005
    lr_decay = 0.1  # 1e-3 -> 1e-4
    lr = 1e-3


    # visualization
    env = faster-rcnn  # visdom env
    port = 8097
    plot_every = 40  # vis every N iter

    # preset
    data = voc
    pretrained_model = vgg16

    # training
    epoch = 14


    use_adam = False # Use Adam optimizer
    use_chainer = False # try match everything as chainer
    use_drop = False # use dropout in RoIHead
    # debug
    debug_file = /tmp/debugf

    test_num = 10000
    # model
    load_path = None

    caffe_pretrain = False # use caffe pretrained model instead of torchvision
    caffe_pretrain_path = checkpoints/vgg16-caffe.pth

    def _parse(self, kwargs):
        state_dict = self._state_dict()
        for k, v in kwargs.items():
            if k not in state_dict:
                raise ValueError(UnKnown Option: "--%s" % k)
            setattr(self, k, v)

        print(======user config========)
        pprint(self._state_dict())
        print(==========end============)

    def _state_dict(self):
        return {k: getattr(self, k) for k, _ in Config.__dict__.items()                 if not k.startswith(_)}


opt = Config()
View Code

配置文件。包括数据及地址、visdom环境、图像尺寸、预训练权重类型、学习率及各超参数。

 

3.  vis_tool.py

技术分享图片
import time

import numpy as np
import matplotlib
import torch as t
import visdom

matplotlib.use(Agg)
from matplotlib import pyplot as plot

# from data.voc_dataset import VOC_BBOX_LABEL_NAMES


VOC_BBOX_LABEL_NAMES = (
    fly,
    bike,
    bird,
    boat,
    pin,
    bus,
    c,
    cat,
    chair,
    cow,
    table,
    dog,
    horse,
    moto,
    p,
    plant,
    shep,
    sofa,
    train,
    tv,
)


def vis_image(img, ax=None):
    """Visualize a color image.

    Args:
        img (~numpy.ndarray): An array of shape :math:`(3, height, width)`.
            This is in RGB format and the range of its value is
            :math:`[0, 255]`.
        ax (matplotlib.axes.Axis): The visualization is displayed on this
            axis. If this is :obj:`None` (default), a new axis is created.

    Returns:
        ~matploblib.axes.Axes:
        Returns the Axes object with the plot for further tweaking.

    """

    if ax is None:
        fig = plot.figure()
        ax = fig.add_subplot(1, 1, 1)
    # CHW -> HWC
    img = img.transpose((1, 2, 0))
    ax.imshow(img.astype(np.uint8))
    return ax


def vis_bbox(img, bbox, label=None, score=None, ax=None):
    """Visualize bounding boxes inside image.

    Args:
        img (~numpy.ndarray): An array of shape :math:`(3, height, width)`.
            This is in RGB format and the range of its value is
            :math:`[0, 255]`.
        bbox (~numpy.ndarray): An array of shape :math:`(R, 4)`, where
            :math:`R` is the number of bounding boxes in the image.
            Each element is organized
            by :math:`(y_{min}, x_{min}, y_{max}, x_{max})` in the second axis.
        label (~numpy.ndarray): An integer array of shape :math:`(R,)`.
            The values correspond to id for label names stored in
            :obj:`label_names`. This is optional.
        score (~numpy.ndarray): A float array of shape :math:`(R,)`.
             Each value indicates how confident the prediction is.
             This is optional.
        label_names (iterable of strings): Name of labels ordered according
            to label ids. If this is :obj:`None`, labels will be skipped.
        ax (matplotlib.axes.Axis): The visualization is displayed on this
            axis. If this is :obj:`None` (default), a new axis is created.

    Returns:
        ~matploblib.axes.Axes:
        Returns the Axes object with the plot for further tweaking.

    """

    label_names = list(VOC_BBOX_LABEL_NAMES) + [bg]
    # add for index `-1`
    if label is not None and not len(bbox) == len(label):
        raise ValueError(The length of label must be same as that of bbox)
    if score is not None and not len(bbox) == len(score):
        raise ValueError(The length of score must be same as that of bbox)

    # Returns newly instantiated matplotlib.axes.Axes object if ax is None
    ax = vis_image(img, ax=ax)

    # If there is no bounding box to display, visualize the image and exit.
    if len(bbox) == 0:
        return ax

    for i, bb in enumerate(bbox):
        xy = (bb[1], bb[0])
        height = bb[2] - bb[0]
        width = bb[3] - bb[1]
        ax.add_patch(plot.Rectangle(
            xy, width, height, fill=False, edgecolor=red, linewidth=2))

        caption = list()

        if label is not None and label_names is not None:
            lb = label[i]
            if not (-1 <= lb < len(label_names)):  # modfy here to add backgroud
                raise ValueError(No corresponding name is given)
            caption.append(label_names[lb])
        if score is not None:
            sc = score[i]
            caption.append({:.2f}.format(sc))

        if len(caption) > 0:
            ax.text(bb[1], bb[0],
                    : .join(caption),
                    style=italic,
                    bbox={facecolor: white, alpha: 0.5, pad: 0})
    return ax


def fig2data(fig):
    """
    brief Convert a Matplotlib figure to a 4D numpy array with RGBA 
    channels and return it

    @param fig: a matplotlib figure
    @return a numpy 3D array of RGBA values
    """
    # draw the renderer
    fig.canvas.draw()

    # Get the RGBA buffer from the figure
    w, h = fig.canvas.get_width_height()
    buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8)
    buf.shape = (w, h, 4)

    # canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
    buf = np.roll(buf, 3, axis=2)
    return buf.reshape(h, w, 4)


def fig4vis(fig):
    """
    convert figure to ndarray
    """
    ax = fig.get_figure()
    img_data = fig2data(ax).astype(np.int32)
    plot.close()
    # HWC->CHW
    return img_data[:, :, :3].transpose((2, 0, 1)) / 255.


def visdom_bbox(*args, **kwargs):
    fig = vis_bbox(*args, **kwargs)
    data = fig4vis(fig)
    return data


class Visualizer(object):
    """
    wrapper for visdom
    you can still access naive visdom function by 
    self.line, self.scater,self._send,etc.
    due to the implementation of `__getattr__`
    """

    def __init__(self, env=default, **kwargs):
        self.vis = visdom.Visdom(env=env, **kwargs)
        self._vis_kw = kwargs

        # e.g.(’loss‘,23) the 23th value of loss
        self.index = {}
        self.log_text = ‘‘

    def reinit(self, env=default, **kwargs):
        """
        change the config of visdom
        """
        self.vis = visdom.Visdom(env=env, **kwargs)
        return self

    def plot_many(self, d):
        """
        plot multi values
        @params d: dict (name,value) i.e. (‘loss‘,0.11)
        """
        for k, v in d.items():
            if v is not None:
                self.plot(k, v)

    def img_many(self, d):
        for k, v in d.items():
            self.img(k, v)

    def plot(self, name, y, **kwargs):
        """
        self.plot(‘loss‘,1.00)
        """
        x = self.index.get(name, 0)
        self.vis.line(Y=np.array([y]), X=np.array([x]),
                      win=name,
                      opts=dict(title=name),
                      update=None if x == 0 else append,
                      **kwargs
                      )
        self.index[name] = x + 1

    def img(self, name, img_, **kwargs):
        """
        self.img(‘input_img‘,t.Tensor(64,64))
        self.img(‘input_imgs‘,t.Tensor(3,64,64))
        self.img(‘input_imgs‘,t.Tensor(100,1,64,64))
        self.img(‘input_imgs‘,t.Tensor(100,3,64,64),nrows=10)
        !!!don‘t ~~self.img(‘input_imgs‘,t.Tensor(100,64,64),nrows=10)~~!!!
        """
        self.vis.images(t.Tensor(img_).cpu().numpy(),
                        win=name,
                        opts=dict(title=name),
                        **kwargs
                        )

    def log(self, info, win=log_text):
        """
        self.log({‘loss‘:1,‘lr‘:0.0001})
        """
        self.log_text += ([{time}] {info} <br>.format(
            time=time.strftime(%m%d_%H%M%S),             info=info))
        self.vis.text(self.log_text, win)

    def __getattr__(self, name):
        return getattr(self.vis, name)

    def state_dict(self):
        return {
            index: self.index,
            vis_kw: self._vis_kw,
            log_text: self.log_text,
            env: self.vis.env
        }

    def load_state_dict(self, d):
        self.vis = visdom.Visdom(env=d.get(env, self.vis.env), **(self.d.get(vis_kw)))
        self.log_text = d.get(log_text, ‘‘)
        self.index = d.get(index, dict())
        return self
View Code

函数vis_image读入一张3,H,W的RGB图像并显示。

函数vis_bbox显示图像及该图的bbox,及bbox的label和score。

函数visdom_bbox调用函数fig2data、fig4vis返回显示后的图像。

Visualizer将要在visdom中显示的项包装起来。

 

4.  eval_tool.py

评估检测结果

函数calc_detection_voc_prec_rec计算每一类的precision和recall。

函数calc_detection_voc_ap调用第一个函数计算每一类的average precision(ap)。

函数eval_detection_voc调用前两个函数,得到ap、map。

 

 

注:bbox坐标都是以(R,4)的形状出现,在进行bounding box回归的时候会将bbox坐标转为中心点坐标(x,y)与height、weight, 其余坐标都是坐上右下角坐标,即`(y_{min}, x_{min}, y_{max}, x_{max})‘

 

Reference:

从编程实现角度学习Faster R-CNN(附极简实现)

Precision、Recall、Ap概念

以上是关于Faster_RCNN 1.准备工作的主要内容,如果未能解决你的问题,请参考以下文章

FPN在faster_rcnn中实现细节代码说明

『cs231n』Faster_RCNN(待续)

pytorch faster_rcnn

菜鸟 学习faster_rcnn 之跑通网络

Object Detection faster_rcnn训练日志

gluoncv faster_rcnn 参数修改