一类有趣的枚举问题
Posted weiyinfu
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了一类有趣的枚举问题相关的知识,希望对你有一定的参考价值。
四个嫌疑犯
ABCD4个嫌疑犯,A说是B干的,B说是D干的,C说不是我干的,D说B在说谎.
其中只有一人说的是真话( )是罪犯
4个人中只有一个人干了坏事,所以只有4种情况。对于答案1000,0100,0010,0001,只需要判断每个答案中有几个真话、几个假话,真话为1的那种情况就是答案。
10道刑侦科推理试题
在这个问题中,最重要的信息是:单选题,如果忽略了这个条件,就会得到多个答案
10个问题,每个问题4中答案,总共有$4^10=2^20$种备选答案,验证每个答案是否自冾即可。
def get_ans_of(ans, i):
return (ans >> ((i - 1) * 2)) & 3
def only_one(ans_list, my_ans):
return len(ans_list) == 1 and ans_list[0] == my_ans
def one(ans):
return True
def two(ans):
five_ans = get_ans_of(ans, 5)
second_ans = get_ans_of(ans, 2)
return five_ans == (2, 3, 0, 1)[second_ans]
def three(ans):
def diff_from_other(ans_list, i):
for j in range(len(ans_list)):
if j != i:
if ans_list[i] == ans_list[j]:
return False
return True
ans_group = [get_ans_of(ans, i) for i in (3, 6, 2, 4)]
real_ans = []
for i in range(4):
if diff_from_other(ans_group, i):
real_ans.append(i)
return only_one(real_ans, get_ans_of(ans, 3))
def four(ans):
same_group = ((1, 5), (2, 7), (1, 9,), (6, 10))
real_ans = []
for i in range(4):
if get_ans_of(ans, same_group[i][0]) == get_ans_of(ans, same_group[i][1]):
real_ans.append(i)
return only_one(real_ans, get_ans_of(ans, 4))
def five(ans):
options = (8, 4, 9, 7)
real_ans = []
for i in range(4):
if get_ans_of(ans, options[i]) == get_ans_of(ans, 5):
real_ans.append(i)
return only_one(real_ans, get_ans_of(ans, 5))
def six(ans):
group = ((2, 4,), (1, 6), (3, 10), (5, 9))
real_ans = []
for i in range(len(group)):
x, y = group[i]
x_ans = get_ans_of(ans, x)
y_ans = get_ans_of(ans, y)
if x_ans == get_ans_of(ans, 8) and y_ans == get_ans_of(ans, 8):
real_ans.append(i)
return only_one(real_ans, get_ans_of(ans, 6))
def seven(ans):
cnt = [0] * 4
for i in range(1, 11):
cnt[get_ans_of(ans, i)] += 1
mi = 0
for i in range(4):
if cnt[i] < cnt[mi]:
mi = i
mi_count = 0
for i in range(4):
if cnt[i] == cnt[mi]:
mi_count += 1
if mi_count != 1:
return False
return mi == (2, 1, 0, 3)[get_ans_of(ans, 7)]
def eight(ans):
options = (7, 5, 2, 10)
real_ans = []
for i in range(4):
if abs(get_ans_of(ans, options[i]) - get_ans_of(ans, 1)) != 1:
real_ans.append(i)
return only_one(real_ans, get_ans_of(ans, 8))
def nine(ans):
one_six_same = get_ans_of(ans, 1) == get_ans_of(ans, 6)
options = [6, 10, 2, 9]
real_ans = []
for i in range(4):
x5_same = get_ans_of(ans, options[i]) == get_ans_of(ans, 5)
if x5_same != one_six_same:
real_ans.append(i)
return only_one(real_ans, get_ans_of(ans, 9))
def ten(ans):
cnt = [0] * 4
for i in range(1, 11):
cnt[get_ans_of(ans, i)] += 1
real_ans = max(cnt) - min(cnt)
return real_ans == (3, 2, 4, 1)[get_ans_of(ans, 10)]
def tos(ans):
s = []
for i in range(1, 11):
s.append("ABCD"[get_ans_of(ans, i)])
return ''.join(s)
def judge(ans):
for i in (one, two, three, four, five, six, seven, eight, nine, ten):
if not i(ans):
return False
return True
def main():
for i in range(4 ** 10):
if judge(i):
print(tos(i))
if __name__ == '__main__':
main()
答案是:BCACA CDABA
这类题目虽然可以用暴力枚举,但是人脑却能够规划出一条最佳推理路径,能够少考虑很多种情况,快速得到答案,这跟我喜欢玩的数独游戏、竖式字谜是一个道理。
如果能够破解人类思考问题时的启发式思想,那将是机器推理的一大步!
以上是关于一类有趣的枚举问题的主要内容,如果未能解决你的问题,请参考以下文章