使用sklearn进行中文文本的tf idf计算
Posted oythonhill
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用sklearn进行中文文本的tf idf计算相关的知识,希望对你有一定的参考价值。
Created by yinhongyu at 2018-4-28
email: [email protected]
使用jieba和sklearn实现了tf idf的计算
import jieba
import jieba.posseg as pseg
from sklearn import feature_extraction
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd
import re
1 读取数据文件
数据爬取自新浪新闻,以"中美贸易战"为关键词,按照相关度搜索,爬取了搜索结果的前100页新闻的正文;
# 读取数据文件
sina_news = pd.read_excel(r"C:\Users\YHY\Desktop\sina_news_finally.xlsx")
sina_news.head(5)
标题 | 来源 | 内容 | 时间 | 阶段 | |
---|---|---|---|---|---|
0 | 外交部回应"美对华贸易调查":打贸易战只会双输 | 海外网 | 海外网8月14日电在14日的外交部例行记者会上,发言人华春莹就近日热点进行回应。相关内容如下... | 2017-08-14 | 0 |
1 | 特朗普政府对华 “301条款战”一触即发,中美贸易战只会双输 | 一财网 | 针对美国总统特朗普将签署行政备忘录,对中国发起贸易调查一事,中国外交部发言人华春莹14日回应... | 2017-08-14 | 0 |
2 | 特朗普欲对华发起301条款调查 专家:该做法已过时 | 第一财经日报 | 特朗普欲对华动用“301条款”被指“过时了” 冯迪凡郭丽琴 虚晃了两次之后,狼真的要... | 2017-08-14 | 0 |
3 | 特朗普欲对华贸易战?美专家:将是美经济倒退 | 参考消息 | 原标题:特朗普欲开展对华贸易战?美专家:这将是美国经济的倒退资料图:美国总统特朗普新华社... | 2017-08-15 | 0 |
4 | 美国对华301条款战一触即发 外交部:贸易战只会双输 | 第一财经日报 | 特朗普政府对华“301条款战”一触即发中美贸易战只会双输 冯迪凡 针对美国总统特朗普... | 2017-08-15 | 0 |
# 人为将文本分为6个阶段,标记为0-6
# 将每个阶段的文本拼接到一起,形成了六个period
period_1 = " ".join(list(sina_news.loc[sina_news.loc[:,"阶段"] == 0,"内容"]))
period_2 = " ".join(list(sina_news.loc[sina_news.loc[:,"阶段"] == 1,"内容"]))
period_3 = " ".join(list(sina_news.loc[sina_news.loc[:,"阶段"] == 2,"内容"]))
period_4 = " ".join(list(sina_news.loc[sina_news.loc[:,"阶段"] == 3,"内容"]))
period_5 = " ".join(list(sina_news.loc[sina_news.loc[:,"阶段"] == 4,"内容"]))
period_6 = " ".join(list(sina_news.loc[sina_news.loc[:,"阶段"] == 5,"内容"]))
2 文本分词处理
def get_cut_result(text, stopWordsPath):
"""
实现效果: 输入一段文本,返回分词后,重新组成的文本(需要给出停用词的路径)
input:
text: 一段由文本组成的字符串
stopWordPath: 停用词文件路径
output:
cutted_concated: 分词后,重新组成的长字符串
"""
# 导入停用词表
line = open(stopWordsPath, ‘r‘, encoding="utf8").readline()
stopwords = line.split(",")
# 构造数字、字母pat
pat = re.compile("[a-z0-9A-Z]+")
result = []
seg_list_1 = jieba.cut(period_1, cut_all=True) # 使用jieba进行分词
for seg in seg_list_1: # 对分词结束后获得的list重新拼接
pat_find = re.search(pat, seg)
if seg not in stopwords and pat_find is None: # 过滤掉停词和全部是pat的词汇
seg = ‘‘.join(seg.split()) # 首先对空格进行处理
if (seg != ‘‘ and seg != "\n" and seg != "\n\n") :
result.append(seg)
cutted_concated = " ".join(result)
return cutted_concated
# 对上述的6个period进行分词
concate_1 = get_cut_result(period_1, r"C:\Users\YHY\Desktop\stopWord.txt")
concate_2 = get_cut_result(period_2, r"C:\Users\YHY\Desktop\stopWord.txt")
concate_3 = get_cut_result(period_3, r"C:\Users\YHY\Desktop\stopWord.txt")
concate_4 = get_cut_result(period_4, r"C:\Users\YHY\Desktop\stopWord.txt")
concate_5 = get_cut_result(period_5, r"C:\Users\YHY\Desktop\stopWord.txt")
concate_6 = get_cut_result(period_6, r"C:\Users\YHY\Desktop\stopWord.txt")
Building prefix dict from the default dictionary ...
Loading model from cache C:\Users\YHY\AppData\Local\Temp\jieba.cache
Loading model cost 1.006 seconds.
Prefix dict has been built succesfully.
---------------------------------------------------------------------------
3 计算和输出tf idf值
# 将分词的结果append到一个列表里,作为tf idf的输入
corpus = []
corpus.append(concate_1)
corpus.append(concate_2)
corpus.append(concate_3)
corpus.append(concate_4)
corpus.append(concate_5)
corpus.append(concate_6)
# 初始化一个CountVectorizer类
# 对corpus里的文本计算tf idf值
vectorizer = CountVectorizer()
transformer = TfidfTransformer()
tfidf = transformer.fit_transform(vectorizer.fit_transform(corpus))
word = vectorizer.get_feature_names() #所有文本的关键字
weight = tfidf.toarray() #对应的tfidf矩阵
# 打印关键词的个数
print(len(word)) #关键词的个数
# 观察第一阶段的tf idf
weight[0]
# 将各个阶段的tf idf值、关键词等组合成一个字典
score_dict = {}
for i in range(len(corpus)):
scores = weight[i]
score_dict[str(i)] = {key:value for (key,value) in zip(scores,word)}
# score_dict[‘0‘] 这里的0表示的第几阶段
# 输出各个阶段tf idf值排名前n的关键词
# 第一阶段的前10个关键词
top_30 = sorted(score_dict["0"].keys(),reverse=True)[0:30]
for i in range(30):
print(score_dict["0"][top_30[i]] + ":" + str(top_30[i]))
--------------------------------------end--------------------------------------
以上是关于使用sklearn进行中文文本的tf idf计算的主要内容,如果未能解决你的问题,请参考以下文章
使用 sklearn 如何计算文档和查询之间的 tf-idf 余弦相似度?
在python中使用sklearn为n-gram计算TF-IDF