图像的各向异性滤波
Posted yoyo_sincerely
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图像的各向异性滤波相关的知识,希望对你有一定的参考价值。
图像的各向异性滤波
非均向性(anisotropy),或作各向异性,与各向同性相反,指物体的全部或部分物理、化学等性质随方向的不同而有所变化的特性,例如石墨单晶的电导率在不同方向的差异可达数千倍,又如天文学上,宇宙微波背景辐射亦拥有些微的非均向性。许多的物理量都具有非均向性,如弹性模量、电导率、在酸中的溶解速度等。
各向异性扩散滤波主要是用来平滑图像的,克服了高斯模糊的缺陷,各向异性扩散在平滑图像时是保留图像边缘的,和双边滤波很像。
代码实现:
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
float k = 15;
float lambda = 0.25;
int N = 20;
void anisotropy_demo(Mat &image, Mat &result);
int main(int argc, char** argv) {
Mat src = imread("D:/vcprojects/images/example.png");
if (src.empty()) {
printf("could not load image...\n");
return -1;
}
namedWindow("input image", CV_WINDOW_AUTOSIZE);
imshow("input image", src);
vector<Mat> mv;
vector<Mat> results;
split(src, mv);
for (int n = 0; n < mv.size(); n++) {
Mat m = Mat::zeros(src.size(), CV_32FC1);
mv[n].convertTo(m, CV_32FC1);
results.push_back(m);
}
int w = src.cols;
int h = src.rows;
Mat copy = Mat::zeros(src.size(), CV_32FC1);
for (int i = 0; i < N; i++) {
anisotropy_demo(results[0], copy);
copy.copyTo(results[0]);
anisotropy_demo(results[1], copy);
copy.copyTo(results[1]);
anisotropy_demo(results[2], copy);
copy.copyTo(results[2]);
}
Mat output;
normalize(results[0], results[0], 0, 255, NORM_MINMAX);
normalize(results[1], results[1], 0, 255, NORM_MINMAX);
normalize(results[2], results[2], 0, 255, NORM_MINMAX);
results[0].convertTo(mv[0], CV_8UC1);
results[1].convertTo(mv[1], CV_8UC1);
results[2].convertTo(mv[2], CV_8UC1);
Mat dst;
merge(mv, dst);
imshow("result", dst);
imwrite("D:/result.png", dst);
waitKey(0);
return 0;
}
void anisotropy_demo(Mat &image, Mat &result) {
int width = image.cols;
int height = image.rows;
// 四邻域梯度
float n = 0, s = 0, e = 0, w = 0;
// 四邻域系数
float nc = 0, sc = 0, ec = 0, wc = 0;
float k2 = k*k;
for (int row = 1; row < height -1; row++) {
for (int col = 1; col < width -1; col++) {
// gradient
n = image.at<float>(row - 1, col) - image.at<float>(row, col);
s = image.at<float>(row + 1, col) - image.at<float>(row, col);
e = image.at<float>(row, col - 1) - image.at<float>(row, col);
w = image.at<float>(row, col + 1) - image.at<float>(row, col);
nc = exp(-n*n / k2);
sc = exp(-s*s / k2);
ec = exp(-e*e / k2);
wc = exp(-w*w / k2);
result.at<float>(row, col) = image.at<float>(row, col) + lambda*(n*nc + s*sc + e*ec + w*wc);
}
}
}
效果炸裂:
以上是关于图像的各向异性滤波的主要内容,如果未能解决你的问题,请参考以下文章
各项异性滤波简单介绍Anisotropic Filtering(AF)