并发编程

Posted yang-sen

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了并发编程相关的知识,希望对你有一定的参考价值。

 

GIL介绍

‘‘‘
定义:
In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple 
native threads from executing Python bytecodes at once. This lock is necessary mainly 
because CPython’s memory management is not thread-safe. (However, since the GIL 
exists, other features have grown to depend on the guarantees that it enforces.)
‘‘‘
结论:在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势

首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行。像其中的JPython就没有GIL。然而因为CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL归结为Python语言的缺陷。所以这里要先明确一点:GIL并不是Python的特性,Python完全可以不依赖于GIL

 

GIL本质就是一把互斥锁,既然是互斥锁,所有互斥锁的本质都一样,都是将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,进而保证数据安全。

可以肯定的一点是:保护不同的数据的安全,就应该加不同的锁。

要想了解GIL,首先确定一点:每次执行python程序,都会产生一个独立的进程。例如python test.py,python aaa.py,python bbb.py会产生3个不同的python进程

技术分享图片
‘‘‘
#验证python test.py只会产生一个进程
#test.py内容
import os,time
print(os.getpid())
time.sleep(1000)
‘‘‘
python3 test.py 
#在windows下
tasklist |findstr python
#在linux下
ps aux |grep python
View Code

在一个python的进程内,不仅有test.py的主线程或者由该主线程开启的其他线程,还有解释器开启的垃圾回收等解释器级别的线程,总之,所有线程都运行在这一个进程内,毫无疑问

#1 所有数据都是共享的,这其中,代码作为一种数据也是被所有线程共享的(test.py的所有代码以及Cpython解释器的所有代码)
例如:test.py定义一个函数work(代码内容如下图),在进程内所有线程都能访问到work的代码,于是我们可以开启三个线程然后target都指向该代码,能访问到意味着就是可以执行。

#2 所有线程的任务,都需要将任务的代码当做参数传给解释器的代码去执行,即所有的线程要想运行自己的任务,首先需要解决的是能够访问到解释器的代码。

综上:

如果多个线程的target=work,那么执行流程是

多个线程先访问到解释器的代码,即拿到执行权限,然后将target的代码交给解释器的代码去执行

解释器的代码是所有线程共享的,所以垃圾回收线程也可能访问到解释器的代码而去执行,这就导致了一个问题:对于同一个数据100,可能线程1执行x=100的同时,而垃圾回收执行的是回收100的操作,解决这种问题没有什么高明的方法,就是加锁处理,如下图的GIL,保证python解释器同一时间只能执行一个任务的代码

GIL与多线程

GIL保护的是解释器级的数据,保护用户自己的数据则需要自己加锁处理

有了GIL的存在,同一时刻同一进程中只有一个线程被执行

#1. cpu到底是用来做计算的,还是用来做I/O的?

#2. 多cpu,意味着可以有多个核并行完成计算,所以多核提升的是计算性能

#3. 每个cpu一旦遇到I/O阻塞,仍然需要等待,所以多核对I/O操作没什么用处 

一个工人相当于cpu,此时计算相当于工人在干活,I/O阻塞相当于为工人干活提供所需原材料的过程,工人干活的过程中如果没有原材料了,则工人干活的过程需要停止,直到等待原材料的到来。

如果你的工厂干的大多数任务都要有准备原材料的过程(I/O密集型),那么你有再多的工人,意义也不大,还不如一个人,在等材料的过程中让工人去干别的活,

反过来讲,如果你的工厂原材料都齐全,那当然是工人越多,效率越高

结论:

  对计算来说,cpu越多越好,但是对于I/O来说,再多的cpu也没用

#分析:
我们有四个任务需要处理,处理方式肯定是要玩出并发的效果,解决方案可以是:
方案一:开启四个进程
方案二:一个进程下,开启四个线程

#单核情况下,分析结果: 
  如果四个任务是计算密集型,没有多核来并行计算,方案一徒增了创建进程的开销,方案二胜
  如果四个任务是I/O密集型,方案一创建进程的开销大,且进程的切换速度远不如线程,方案二胜

#多核情况下,分析结果:
  如果四个任务是计算密集型,多核意味着并行计算,在python中一个进程中同一时刻只有一个线程执行用不上多核,方案一胜
  如果四个任务是I/O密集型,再多的核也解决不了I/O问题,方案二胜

 
#结论:现在的计算机基本上都是多核,python对于计算密集型的任务开多线程的效率并不能带来多大性能上的提升,甚至不如串行(没有大量切换),但是,对于IO密集型的任务效率还是有显著提升的。

多线程性能测试

技术分享图片
from multiprocessing import Process
from threading import Thread
import os,time
def work():
    res=0
    for i in range(100000000):
        res*=i


if __name__ == __main__:
    l=[]
    print(os.cpu_count()) #本机为4核
    start=time.time()
    for i in range(4):
        p=Process(target=work) #耗时5s多
        p=Thread(target=work) #耗时18s多
        l.append(p)
        p.start()
    for p in l:
        p.join()
    stop=time.time()
    print(run time is %s %(stop-start))
计算密集型(多进程效率高)
技术分享图片
from multiprocessing import Process
from threading import Thread
import threading
import os,time
def work():
    time.sleep(2)
    print(===>)

if __name__ == __main__:
    l=[]
    print(os.cpu_count()) #本机为4核
    start=time.time()
    for i in range(400):
        # p=Process(target=work) #耗时12s多,大部分时间耗费在创建进程上
        p=Thread(target=work) #耗时2s多
        l.append(p)
        p.start()
    for p in l:
        p.join()
    stop=time.time()
    print(run time is %s %(stop-start))
IO密集型(多线程效率高)

GIL与互斥锁对比

#1.线程抢的是GIL锁,GIL锁相当于执行权限,拿到执行权限后才能拿到互斥锁Lock,其他线程也可以抢到GIL,但如果发现Lock仍然没有被释放则阻塞,即便是拿到执行权限GIL也要立刻交出来

#2.join是等待所有,即整体串行,而锁只是锁住修改共享数据的部分,即部分串行,要想保证数据安全的根本原理在于让并发变成串行,join与互斥锁都可以实现,毫无疑问,互斥锁的部分串行效率要更高

GIL本质就是一把互斥锁,而且是夹在python解释器上的,同一个进程内的所有线程都要先抢到GIL锁,才可以执行解释器代码

使用GIL的优点:

   保证cpython解释器内存管理的线程安全

缺点:

   同一进程内所有的线程同一时刻只能执行一个cpython解释器,无法并行

锁的目的是为了保护共享的数据,同一时间只能有一个线程来修改共享的数据,保护不同的数据就应该加不同的锁

GIL 与Lock是两把锁,保护的数据不一样,前者是解释器级别的(当然保护的就是解释器级别的数据,比如垃圾回收的数据),后者是保护用户自己开发的应用程序的数据,很明显GIL不负责这件事,只能用户自定义加锁处理,即Lock

所有线程抢的是GIL锁,或者说所有线程抢的是执行权限

  线程1抢到GIL锁,拿到执行权限,开始执行,然后加了一把Lock,还没有执行完毕,即线程1还未释放Lock,有可能线程2抢到GIL锁,开始执行,执行过程中发现Lock还没有被线程1释放,于是线程2进入阻塞,被夺走执行权限,有可能线程1拿到GIL,然后正常执行到释放Lock。。。这就导致了串行运行的效果

  既然是串行,那我们执行

  t1.start()

  t1.join

  t2.start()

  t2.join()

  这也是串行执行啊,为何还要加Lock呢,需知join是等待t1所有的代码执行完,相当于锁住了t1的所有代码,而Lock只是锁住一部分操作共享数据的代码。

技术分享图片
from threading import Thread,Lock
import time
mutex=Lock()
count=0
def task():
    global count
    temp=count
    time.sleep(0.1)
    count=temp+1
if __name__ == __main__:
    t_l=[]
    for i in range(100):
        t=Thread(target=task)
        t_l.append(t)
        t.start()
    for t in t_l:
        t.join()
    print(,count)  #count最后打印结果为99

# 因为全局变量count=0,for循环开100个线程,第一个线程抢到GIL,在执行时其他所有的程序都得等待,但到了time.sleep(0.1)那里睡0.1秒,这0.1秒足够for循环完所有的线程,这个时候所有的线程手中拿到都是count=0,所有最后的的执行结果为99
View Code

锁通常被用来实现对共享资源的同步访问。为每一个共享资源创建一个Lock对象,当你需要访问该资源时,调用acquire方法来获取锁对象(如果其它线程已经获得了该锁,则当前线程需等待其被释放),待资源访问完后,再调用release方法释放锁:

技术分享图片
from threading import Thread,Lock
import time
mutex=Lock()
count=0
def task():
    global count
    mutex.acquire()
    temp=count
    time.sleep(0.1)
    count=temp+1
    mutex.release()
if __name__ == __main__:
    t_l=[]
    for i in range(100):
        t=Thread(target=task)
        t_l.append(t)
        t.start()
    for t in t_l:
        t.join()
    print(,count)    #count最后执行结果为0
加上互斥锁
互斥锁和GIL综合分析
分析:
  #1.100个线程去抢GIL锁,即抢执行权限
     #2. 肯定有一个线程先抢到GIL(暂且称为线程1),然后开始执行,一旦执行就会拿到lock.acquire()
     #3. 极有可能线程1还未运行完毕,就有另外一个线程2抢到GIL,然后开始运行,但线程2发现互斥锁lock还未被线程1释放,于是阻塞,被迫交出执行权限,即释放GIL
    #4.直到线程1重新抢到GIL,开始从上次暂停的位置继续执行,直到正常释放互斥锁lock,然后其他的线程再重复2 3 4的过程
技术分享图片
#不加锁:并发执行,速度快,数据不安全
from threading import current_thread,Thread,Lock
import os,time
def task():
    global n
    print(%s is running %current_thread().getName())
    temp=n
    time.sleep(0.5)
    n=temp-1


if __name__ == __main__:
    n=100
    lock=Lock()
    threads=[]
    start_time=time.time()
    for i in range(100):
        t=Thread(target=task)
        threads.append(t)
        t.start()
    for t in threads:
        t.join()

    stop_time=time.time()
    print(主:%s n:%s %(stop_time-start_time,n))

‘‘‘
Thread-1 is running
Thread-2 is running
......
Thread-100 is running
主:0.5216062068939209 n:99
‘‘‘


#不加锁:未加锁部分并发执行,加锁部分串行执行,速度慢,数据安全
from threading import current_thread,Thread,Lock
import os,time
def task():
    #未加锁的代码并发运行
    time.sleep(3)
    print(%s start to run %current_thread().getName())
    global n
    #加锁的代码串行运行
    lock.acquire()
    temp=n
    time.sleep(0.5)
    n=temp-1
    lock.release()

if __name__ == __main__:
    n=100
    lock=Lock()
    threads=[]
    start_time=time.time()
    for i in range(100):
        t=Thread(target=task)
        threads.append(t)
        t.start()
    for t in threads:
        t.join()
    stop_time=time.time()
    print(主:%s n:%s %(stop_time-start_time,n))

‘‘‘
Thread-1 is running
Thread-2 is running
......
Thread-100 is running
主:53.294203758239746 n:0
‘‘‘

#有的同学可能有疑问:既然加锁会让运行变成串行,那么我在start之后立即使用join,就不用加锁了啊,也是串行的效果啊
#没错:在start之后立刻使用jion,肯定会将100个任务的执行变成串行,毫无疑问,最终n的结果也肯定是0,是安全的,但问题是
#start后立即join:任务内的所有代码都是串行执行的,而加锁,只是加锁的部分即修改共享数据的部分是串行的
#单从保证数据安全方面,二者都可以实现,但很明显是加锁的效率更高.
from threading import current_thread,Thread,Lock
import os,time
def task():
    time.sleep(3)
    print(%s start to run %current_thread().getName())
    global n
    temp=n
    time.sleep(0.5)
    n=temp-1


if __name__ == __main__:
    n=100
    lock=Lock()
    start_time=time.time()
    for i in range(100):
        t=Thread(target=task)
        t.start()
        t.join()
    stop_time=time.time()
    print(主:%s n:%s %(stop_time-start_time,n))

‘‘‘
Thread-1 start to run
Thread-2 start to run
......
Thread-100 start to run
主:350.6937336921692 n:0 #耗时是多么的恐怖
互斥锁和join的区别

进程池和线程池

“ 池 ”  是用来限制并发的任务数目,限制我们的计算机在一个自己可承受的范围内去并发地执行任务

什么时候装进程:并发的任务属于计算密集型
什么时候装线程:并发的任务属于IO密集型

 

# from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
# import time,os,random
#
# def task(x):
#     print(‘%s 接客‘ %os.getpid())
#     time.sleep(random.randint(2,5))
#     return x**2
#
# if __name__ == ‘__main__‘:
#     p=ProcessPoolExecutor() # 默认开启的进程数是cpu的核数
#
#
#     for i in range(20):
#         p.submit(task,i)


from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
import time,os,random

def task(x):
    print(%s 接客 %x)
    time.sleep(random.randint(2,5))
    return x**2

if __name__ == __main__:
    p=ThreadPoolExecutor(4) # 如果括号里面不写值,默认开启的线程数是cpu的核数*5


    for i in range(20):
        p.submit(task,i)

 

 

基于多线程实现并发的套接字通信

技术分享图片
from socket import *
from threading import Thread
from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor

tpool=ThreadPoolExecutor(3)

def communicate(conn,client_addr):
    while True:  # 通讯循环
        try:
            data = conn.recv(1024)
            if not data: break
            conn.send(data.upper())
        except ConnectionResetError:
            break
    conn.close()


def server():
    server=socket(AF_INET,SOCK_STREAM)
    server.bind((127.0.0.1,8080))
    server.listen(5)

    while True: # 链接循环
        conn,client_addr=server.accept()
        print(client_addr)
        # t=Thread(target=communicate,args=(conn,client_addr))
        # t.start()
        tpool.submit(communicate,conn,client_addr)

    server.close()

if __name__ == __main__:
    server()
服务端

 

技术分享图片
from socket import *

client=socket(AF_INET,SOCK_STREAM)
client.connect((127.0.0.1,8080))

while True:
    msg=input(>>>: ).strip()
    if not msg:continue
    client.send(msg.encode(utf-8))
    data=client.recv(1024)
    print(data.decode(utf-8))

client.close()
客户端

 


以上是关于并发编程的主要内容,如果未能解决你的问题,请参考以下文章

golang代码片段(摘抄)

《java并发编程实战》

Java并发编程实战 04死锁了怎么办?

Java并发编程实战 04死锁了怎么办?

Java编程思想之二十 并发

golang goroutine例子[golang并发代码片段]