洛谷P1352 没有上司的舞会(树形DP水题)

Posted pipixue

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了洛谷P1352 没有上司的舞会(树形DP水题)相关的知识,希望对你有一定的参考价值。

题目描述

某大学有N个职员,编号为1~N。他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri,但是呢,如果某个职员的上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。

输入输出格式

输入格式:

 第一行一个整数N。(1<=N<=6000)

接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)

接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。

最后一行输入0 0

输出格式

输出最大的快乐指数

输入输出样例

输入样例

7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0

输出样例

5

树形DP的水题。
水点一:每个员工只有一个老板,因此,一个father数组足够存图。
水点二:状态贼少:只有去与不去。
那么,我们就来看一看动态转移方程。
f[i][1]+=f[儿子][0];
f[i][0]+=max(f[儿子][1],f[儿子][0]);
动态转移方程很好理解,那个i表示以i为跟的子树,0和1代表两种状态,那个儿子当然就是指i的儿子了,怎么找到程序里可以体现。
如果他去了,儿子肯定不去,如果他不去,儿子可去可不去,找一个最优解。
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cmath>
 4 using namespace std;
 5 const int MAXN=6000+50;
 6 int n;
 7 int boss[MAXN];
 8 int dp[MAXN][2];
 9 void tree_dp(int k)
10 {
11     for(int i=1;i<=n;i++)
12     {
13         if(boss[i]==k)
14         {
15             tree_dp(i);
16             dp[k][0]+=max(dp[i][1],dp[i][0]);
17             dp[k][1]+=dp[i][0];
18         }
19     }
20 }
21 int main()
22 {
23     scanf("%d",&n);
24     for(int i=1;i<=n;i++)scanf("%d",&dp[i][1]);
25     int root=1;//这个根节点乱赋一个值就可以了,要知道,向上找根节点时,不管从哪里开始,最终都会到根节点
26     for(int i=1;i<=n;i++)
27     {
28         int l,k;
29         scanf("%d%d",&l,&k);
30         boss[l]=k;//只保存他老板
31     }
32     while(boss[root]){root=boss[root];}//如果有老板,就一直向树的跟靠近,直到没有老板
33     tree_dp(root);
34     printf("%d\n",max(dp[root][1],dp[root][0]));//大老板去与不去中取最优解
35     return 0;
36 }

 

 
 


以上是关于洛谷P1352 没有上司的舞会(树形DP水题)的主要内容,如果未能解决你的问题,请参考以下文章

P1352 没有上司的舞会+P1122 最大子树和(树形DP入门)

[洛谷P1352][codevs1380]没有上司的舞会

P1352 没有上司的舞会——树形DP入门

[luogu]P1352 没有上司的舞会[树形DP]

luogu P1352ybtoj 树形DP课堂过关 例题1树上求和 & 没有上司的舞会

P1352 没有上司的舞会