nyoj 0269 VF

Posted kindleheart

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了nyoj 0269 VF相关的知识,希望对你有一定的参考价值。

nyoj 0269 VF

意思大致为从1-10^9数中找到位数和为s的个数

分析:利用动态规划思想,一位一位的考虑,和s的范围为1-81

  状态定义:dp[i][j] = 当前所有i位数的和为j的个数

  除了最高位的取值为1-9(最高位不能为0),其余位的取值都为0-9,所有我们可以最开始初始化dp[1][j](1 <= j <= 9) = 1.假如我们求dp[5][9]当前所有5位数的和为9的个数,那么我们需要考虑0-9这10个数的情况,

  如果此时个位(即第5位)的值为6,那么我们需要得知dp[4][9-6]的值,因为和为9,且此时个位(第五位)为6,那么前4个数和必须为3才满足和为9,那么dp[5][9] += d[5-1][9-6]; 

  由此很容易得到状态转移方程:dp[i][j] = dp[i-1][j-k];

  注意!!!:1000000000不能忽视,最后和为1的结果必须再加1;

代码:

#include<bits/stdc++.h>
using namespace std;
int dp[10][81];
int main() {
    memset(dp, 0, sizeof(dp));
    for(int i = 1; i <= 9; i++) dp[1][i] = 1;
    for(int i = 2; i < 10; i++) {
        int c = i*9;
        for(int j = 1; j <= c; j++) {
            for(int k = 0; k < j && k <= 9; k++) 
                dp[i][j] += dp[i-1][j-k];
        }
    }
    for(int i = 2; i <= 9; i++) {
        for(int j = 1; j <= 81; j++)
            dp[i][j] += dp[i-1][j];    
    }
    dp[9][1]++;//1000000000的情况 
    int s;
    while(scanf("%d", &s) == 1) printf("%d\n", dp[9][s]);
    return 0;
} 

 

以上是关于nyoj 0269 VF的主要内容,如果未能解决你的问题,请参考以下文章

LQ0269 土地测量水题

LQ0269 土地测量水题

Cg入门19:Fragment shader - 片段级模型动态变色

关于VF中select left(right) join的准确用法

vf表单怎么打印

NYOJ 2356: 哈希计划模拟