BZOJ-2460&3105元素&新Nim游戏 动态维护线性基 + 贪心

Posted DaD3zZ

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BZOJ-2460&3105元素&新Nim游戏 动态维护线性基 + 贪心相关的知识,希望对你有一定的参考价值。

3105: [cqoi2013]新Nim游戏

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 839  Solved: 490
[Submit][Status][Discuss]

Description

传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同)。两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴。可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿。拿走最后一根火柴的游戏者胜利。
本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴。可以一堆都不拿,但不可以全部拿走。第二回合也一样,第二个游戏者也有这样一次机会。从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样。
如果你先拿,怎样才能保证获胜?如果可以获胜的话,还要让第一回合拿的火柴总数尽量小。

Input

第一行为整数k。即火柴堆数。第二行包含k个不超过109的正整数,即各堆的火柴个数。

Output

输出第一回合拿的火柴数目的最小值。如果不能保证取胜,输出-1。

Sample Input

6
5 5 6 6 5 5

Sample Output

21

HINT

k<=100

Source

2460: [BeiJing2011]元素

Time Limit: 20 Sec  Memory Limit: 128 MB
Submit: 564  Solved: 304
[Submit][Status][Discuss]

Description

  相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而
使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过一块同一种矿石,那么一定会发生“魔法抵消”。  后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起来为零。   并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,并且通过实验推算出每一种矿石的元素序号。    现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多有多大的魔力。 

Input

第一行包含一个正整数N,表示矿石的种类数。 
接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号和魔力值。

Output

仅包一行,一个整数:最大的魔力值

Sample Input

3
1 10
2 20
3 30

Sample Output

50

HINT

由于有“魔法抵消”这一事实,每一种矿石最多使用一块。 
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,
则会发生魔法抵消,得不到法杖。 
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。 

对于全部的数据:N ≤ 1000,Numberi ≤ 10^18,Magici ≤ 10^4。

Source

Day2

Solution

线性基,动态维护   +  贪心

贪心的进行排序,按照对答案的影响从大到小排序,然后动态维护线性基,判断异或和是否为0

貌似贪心什么的要拿拟阵来证明= =(那玩个卵)

Code

//BZOJ2460
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; long long read() { long long x=0,f=1; char ch=getchar(); while (ch<0 || ch>9) {if (ch==-) f=-1; ch=getchar();} while (ch>=0 && ch<=9) {x=x*10+ch-0; ch=getchar();} return x*f; } #define maxn 1010 int N,ans; struct YSNode { long long Num;int Mag; bool operator < (const YSNode & A) const {return Mag>A.Mag;} }a[maxn]; long long base[maxn]; int main() { N=read(); for (int i=1; i<=N; i++) a[i].Num=read(),a[i].Mag=read(); sort(a+1,a+N+1); for (int i=1; i<=N; i++) { for (int j=64; j>=0; j--) if ((a[i].Num>>j)&1) { if (!base[j]) {base[j]=i; break;} else a[i].Num^=a[base[j]].Num; } if (a[i].Num) ans+=a[i].Mag; } printf("%d\n",ans); return 0; }

 

以上是关于BZOJ-2460&3105元素&新Nim游戏 动态维护线性基 + 贪心的主要内容,如果未能解决你的问题,请参考以下文章

bzoj2460 BeiJing2011—元素

BZOJ 2460: [BeiJing2011]元素

BZOJ 2460 Beijing2011 元素

bzoj2460[BeiJing2011]元素

[BZOJ2460][BeiJing2011]元素

[BZOJ2460][BJOI2011]元素(线性基)