求 0-N 内有多少个素数

Posted half-worm

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了求 0-N 内有多少个素数相关的知识,希望对你有一定的参考价值。

   问题:求 0-N 内素数的个数。

预备知识

  1. 什么是素数:素数(又叫质数),与之相反的是合数。素数的因数只有 1他本身,例如:7 = 1 * 7。而 6 = 1 * 6 = 2 * 3,因此6不是素数。 规定:0 和 1 既不是 素数 也不是 合数。
  2. 判断素数:如果一个数 x 是素数,那么在整数范围 [2,√x ] 之间,找不到任何能整除x 的整数。为什么只需要尝试到 √x ,而不是 n-1 呢?(肯定不是n呀,因为n是他本身,判断 n 就和判断 1 一样,没有意义的)。
  3. √x 的由来:一个正数 n ,可以表示成:n = √n * √n 。n 的两个因数有以下两种可能:? 两个因数都为 √n ?一个因数大于 √n,另一个因数一定小于 √n。如果我们在 2 到 √n 之间找不到一个因数的话,那么对应的在 √n 到 n-1 的范围内 绝对也找不到另外一个因数。而素数所期待的不正是 2 到 n-1 的范围内找不到两个因数,只希望因数为 1 和 n 吗?

 阶段一

 1 public void countPrime_1(int n) {
 2 
 3         // 之所以数组范围设置为 n+1,是因为数组从下标为 1 开始计数,n表示最后一个数
 4         // 数组初始值为false,因为我们假设false代表是素数,true代表不是素数
 5         boolean[] b = new boolean[n + 1];
 6 
 7         // 2 - n 每个数逐一判断
 8         for (int i = 2; i <= n; i++) {
 9             // 【2,√i】
10             for (int j = 2; j * j <= i; j++) {
11                 if (i % j == 0) {
12                     // 在判断 i 是否为素数的过程中,遍历 2 - √i
13                     // 一旦发现在【2,√i】中,有数整除了,将数组b中下标为i的设置为true,
14                     // 代表不是素数,并且中断内层for循环,因为已经判断出i不是素数了,没有必要
15                     // 继续循环判断下去。 直接判断第i+1个数
16                     b[i] = true;
17                     break;
18                 }
19             }
20         }
21 
22         /**
23          * 此部分内容在接下来将不写
24          */
25         int count = 0;
26         // 下标从2开始,是因为 1 不是素数也不是合数,没有必要判断
27         for (int i = 2; i <= n; i++) {
28             // 当为false时,代表素数
29             if (b[i] == false) {
30                 count++;
31             }
32         }
33     }

  注意:在第10行中的for循环内,使用的是 j * j <= i ,而不是 j <= sqrt(i)。原因:第一:sqrt是用来处理浮点数的,而浮点数的计算速度远远慢于integer。第二,函数调用也会造成时间的浪费。第三:浮点数的存储误差可能引出致命错误,如  sqrt(9)  可能等于 2.9999999 ,那么 int(sqrt(9)) 就等于2 而不是3。

 阶段二

筛选法:在一张纸上写上 1-n 全部整数,然后逐个判断是否为素数,找出一个非素数,就把它挖掉,最后剩下的就是素数。

技术分享图片

  具体做法如下:

  1. 先将 1 挖掉(因为1不是素数)
  2. 用 2 去除它后面的各个数,把能被 2 整除的数挖掉,即把 2 的倍数挖掉
  3. 用 3 去除它后面各数,把 3 的倍数挖掉
  4. 分别用 4、5 等数作为除数去除这些数以后的各数。这个过程一直进行到在除数后面的数已全被挖掉为止
  5. 剩下的数就是素数

 

 1 public void countPrime_2(int n) {
 2         
 3         boolean[] b = new boolean[n + 1];
 4 
 5         for (int p = 2; p * p <= n; p++) {
 6             // 假设当 p 为2时,也就是判断在数组 b 中下标为 2 的值是不是false,即 数字2 是不是素数
 7             // 如果是素数,就将 2 的倍数 4 6 8 10 等等全部标记为 非素数,即b[2] b[4] b[6] 的值为true
 8             if (b[p] == false) {
 9                 /**
10                  *  当 p 为 3 时,j = 3 * 3 = 9 。哎??? 怎么直接将 9 标记为 非素数了 ???  
11                  *  不应该是将 6 先标记为 非素数吗? 直接标记 9 了,那 6 怎么办 ???
12                  *  因为: 6 也是 素数2的倍数,在计算素数 2 的时候就已经将6除去了
13                  *  所以直接从 p * p 开始计算,相当于又优化了
14                  *  j = j + p 代表跳到 p 的下一个倍数
15                  */
16                 for (int j = p * p; j <= n; j = j + p) {
17                     if (b[j] == false) {
18                         b[j] = true;
19                     }
20                 }
21             }
22         }
23     }

 

对于一个数p,会依次去除  p*p  ,  p*(p+1) , p*(p+2) .... p*(p+k)   【p*(p+k)<=n】

前面不是说要去除 p 的所有倍数的吗?那 p*2 ,p*3, p*4 ... p*(p-1)怎么不去除呢?

他们已经被去除了。因为当前我们要消去 p 的倍数,那么,之前一定去除了 2  3  4  ... p-3 , p-2 ,p-1  的这些数 的倍数,举个例子:之前一定去除了 2*p  3*p  4*p  (p-1)*p。所以 , 当想去除p的倍数时,如果我们还是去除 p*2  p*3  p*4  p*(p-1)  那么岂不是与 我们去除2的倍数时 会去除 2*p 、去除3的倍数时 会去除 3*p、去除4的倍数时 会去除 4*p  重复了 ???

 

以上是关于求 0-N 内有多少个素数的主要内容,如果未能解决你的问题,请参考以下文章

埃氏筛法(求n以内有多少个素数)

求素数

POJ3292 Semi-prime H-numbers

HH的项链 (求区间内有多少个不同的数字)

一道面试题:用多线程求1000以内的素数有多少个?并给出消耗时间

HDU3555 Bomb 题解 数位DP