机器学习基础 --- pandas的基本使用
Posted God_Li
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习基础 --- pandas的基本使用相关的知识,希望对你有一定的参考价值。
一、pandas的简介
Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
pandas的数据结构:
Series:一维数组,与Numpy中的一维array类似。二者与Python基本的数据结构List也很相近,其区别是:List中的元素可以是不同的数据类型,而Array和Series中则只允许存储相同的数据类型,这样可以更有效的使用内存,提高运算效率。
Time- Series:以时间为索引的Series。
DataFrame:二维的表格型数据结构。很多功能与R中的data.frame类似。可以将DataFrame理解为Series的容器。以下的内容主要以DataFrame为主。
Panel :三维的数组,可以理解为DataFrame的容器。
本文主要介绍DateFrame和Series,其中DataFrame充电介绍。
本文中用到的数据文件地址:pandas的基本使用.zip
本文只是结合实例介绍pandas的基本使用,若要详细深入学习,请参阅pandas官方文档。
二、pandas中的DateFrame
使用pandas我们可以很方便的对二维表结构进行一些常规操作。
1. 使用pandas读取csv(或excel等)文件
import pandas food_info = pandas.read_csv("food_info.csv") # 读取csv文件 # 读取Excel文件使用pandas.read_excel()即可 print(type(food_info)) # food_info为一个DataFrame对象 print(food_info.dtypes) # 各项数据的类型
<class \'pandas.core.frame.DataFrame\'> NDB_No int64 Shrt_Desc object Water_(g) float64 Energ_Kcal int64 Protein_(g) float64 Lipid_Tot_(g) float64 Ash_(g) float64 Carbohydrt_(g) float64 Fiber_TD_(g) float64 Sugar_Tot_(g) float64 Calcium_(mg) float64 Iron_(mg) float64 Magnesium_(mg) float64 Phosphorus_(mg) float64 Potassium_(mg) float64 Sodium_(mg) float64 Zinc_(mg) float64 Copper_(mg) float64 Manganese_(mg) float64 Selenium_(mcg) float64 Vit_C_(mg) float64 Thiamin_(mg) float64 Riboflavin_(mg) float64 Niacin_(mg) float64 Vit_B6_(mg) float64 Vit_B12_(mcg) float64 Vit_A_IU float64 Vit_A_RAE float64 Vit_E_(mg) float64 Vit_D_mcg float64 Vit_D_IU float64 Vit_K_(mcg) float64 FA_Sat_(g) float64 FA_Mono_(g) float64 FA_Poly_(g) float64 Cholestrl_(mg) float64 dtype: object
2. 获取数据
food_info.head(10) # 获取前10行数据,默认获取5行 # first_rows = food_info.head() # first_rows # food_info.tail(8) # 获取尾8行数据,默认获取5行 # print(food_info.tail()) print(food_info.columns) # 获取foodinfo的各字段名(即表头)# print(food_info.shape) # 获取结构 比如此文件时8618行×36列
Index([\'NDB_No\', \'Shrt_Desc\', \'Water_(g)\', \'Energ_Kcal\', \'Protein_(g)\', \'Lipid_Tot_(g)\', \'Ash_(g)\', \'Carbohydrt_(g)\', \'Fiber_TD_(g)\', \'Sugar_Tot_(g)\', \'Calcium_(mg)\', \'Iron_(mg)\', \'Magnesium_(mg)\', \'Phosphorus_(mg)\', \'Potassium_(mg)\', \'Sodium_(mg)\', \'Zinc_(mg)\', \'Copper_(mg)\', \'Manganese_(mg)\', \'Selenium_(mcg)\', \'Vit_C_(mg)\', \'Thiamin_(mg)\', \'Riboflavin_(mg)\', \'Niacin_(mg)\', \'Vit_B6_(mg)\', \'Vit_B12_(mcg)\', \'Vit_A_IU\', \'Vit_A_RAE\', \'Vit_E_(mg)\', \'Vit_D_mcg\', \'Vit_D_IU\', \'Vit_K_(mcg)\', \'FA_Sat_(g)\', \'FA_Mono_(g)\', \'FA_Poly_(g)\', \'Cholestrl_(mg)\'], dtype=\'object\')
# print(food_info.loc[0]) # 获取第0行数据 print(food_info.loc[6000]) # 获取第6000行数据 # food_info.loc[10000] # 获取第10000行数据,超过数据文件本身长度,报错KeyError: \'the label [10000] is not in the [index]\'
NDB_No 18995 Shrt_Desc KELLOGG\'S EGGO BISCUIT SCRAMBLERS BACON EGG & CHS Water_(g) 42.9 Energ_Kcal 258 Protein_(g) 8.8 Lipid_Tot_(g) 7.9 Ash_(g) NaN Carbohydrt_(g) 38.3 Fiber_TD_(g) 2.1 Sugar_Tot_(g) 4.7 Calcium_(mg) 124 Iron_(mg) 2.7 Magnesium_(mg) 14 Phosphorus_(mg) 215 Potassium_(mg) 225 Sodium_(mg) 610 Zinc_(mg) 0.5 Copper_(mg) NaN Manganese_(mg) NaN Selenium_(mcg) NaN Vit_C_(mg) NaN Thiamin_(mg) 0.3 Riboflavin_(mg) 0.26 Niacin_(mg) 2.4 Vit_B6_(mg) 0.02 Vit_B12_(mcg) 0.1 Vit_A_IU NaN Vit_A_RAE NaN Vit_E_(mg) 0 Vit_D_mcg 0 Vit_D_IU 0 Vit_K_(mcg) NaN FA_Sat_(g) 4.1 FA_Mono_(g) 1.5 FA_Poly_(g) 1.1 Cholestrl_(mg) 27 Name: 6000, dtype: object
# food_info.loc[3:6] # 获取第3到6行数据 two_five_ten = [2,5,10] print(food_info.loc[two_five_ten]) # 获取第2,5,10数据
NDB_No Shrt_Desc Water_(g) Energ_Kcal Protein_(g) \\ 2 1003 BUTTER OIL ANHYDROUS 0.24 876 0.28 5 1006 CHEESE BRIE 48.42 334 20.75 10 1011 CHEESE COLBY 38.20 394 23.76 Lipid_Tot_(g) Ash_(g) Carbohydrt_(g) Fiber_TD_(g) Sugar_Tot_(g) \\ 2 99.48 0.00 0.00 0.0 0.00 5 27.68 2.70 0.45 0.0 0.45 10 32.11 3.36 2.57 0.0 0.52 ... Vit_A_IU Vit_A_RAE Vit_E_(mg) Vit_D_mcg Vit_D_IU \\ 2 ... 3069.0 840.0 2.80 1.8 73.0 5 ... 592.0 174.0 0.24 0.5 20.0 10 ... 994.0 264.0 0.28 0.6 24.0 Vit_K_(mcg) FA_Sat_(g) FA_Mono_(g) FA_Poly_(g) Cholestrl_(mg) 2 8.6 61.924 28.732 3.694 256.0 5 2.3 17.410 8.013 0.826 100.0 10 2.7 20.218 9.280 0.953 95.0
# food_info[\'Shrt_Desc\'] # 获取字段名为\'Shrt_Desc\'的这一列 ndb_col = food_info[\'NDB_No\'] # 获取字段名为\'NDB_No\'的这一列 # print(ndb_col) col_name = \'Shrt_Desc\' print(food_info[col_name])
0 BUTTER WITH SALT 1 BUTTER WHIPPED WITH SALT 2 BUTTER OIL ANHYDROUS 3 CHEESE BLUE 4 CHEESE BRICK 5 CHEESE BRIE 6 CHEESE CAMEMBERT 7 CHEESE CARAWAY 8 CHEESE CHEDDAR 9 CHEESE CHESHIRE 10 CHEESE COLBY 11 CHEESE COTTAGE CRMD LRG OR SML CURD 12 CHEESE COTTAGE CRMD W/FRUIT 13 CHEESE COTTAGE NONFAT UNCRMD DRY LRG OR SML CURD 14 CHEESE COTTAGE LOWFAT 2% MILKFAT 15 CHEESE COTTAGE LOWFAT 1% MILKFAT 16 CHEESE CREAM 17 CHEESE EDAM 18 CHEESE FETA 19 CHEESE FONTINA 20 CHEESE GJETOST 21 CHEESE GOUDA 22 CHEESE GRUYERE 23 CHEESE LIMBURGER 24 CHEESE MONTEREY 25 CHEESE MOZZARELLA WHL MILK 26 CHEESE MOZZARELLA WHL MILK LO MOIST 27 CHEESE MOZZARELLA PART SKIM MILK 28 CHEESE MOZZARELLA LO MOIST PART-SKIM 29 CHEESE MUENSTER ... 8588 BABYFOOD CRL RICE W/ PEARS & APPL DRY INST 8589 BABYFOOD BANANA NO TAPIOCA STR 8590 BABYFOOD BANANA APPL DSSRT STR 8591 SNACKS TORTILLA CHIPS LT (BAKED W/ LESS OIL) 8592 CEREALS RTE POST HONEY BUNCHES OF OATS HONEY RSTD 8593 POPCORN MICROWAVE LOFAT&NA 8594 BABYFOOD FRUIT SUPREME DSSRT 8595 CHEESE SWISS LOW FAT 8596 BREAKFAST BAR CORN FLAKE CRUST W/FRUIT 8597 CHEESE MOZZARELLA LO NA 8598 MAYONNAISE DRSNG NO CHOL 8599 OIL CORN PEANUT AND OLIVE 8600 SWEETENERS TABLETOP FRUCTOSE LIQ 8601 CHEESE FOOD IMITATION 8602 CELERY FLAKES DRIED 8603 PUDDINGS CHOC FLAVOR LO CAL INST DRY MIX 8604 BABYFOOD GRAPE JUC NO SUGAR CND 8605 JELLIES RED SUGAR HOME PRESERVED 8606 PIE FILLINGS BLUEBERRY CND 8607 COCKTAIL MIX NON-ALCOHOLIC CONCD FRZ 8608 PUDDINGS CHOC FLAVOR LO CAL REG DRY MIX 8609 PUDDINGS ALL FLAVORS XCPT CHOC LO CAL REG DRY MIX 8610 PUDDINGS ALL FLAVORS XCPT CHOC LO CAL INST DRY... 8611 VITAL WHEAT GLUTEN 8612 FROG LEGS RAW 8613 MACKEREL SALTED 8614 SCALLOP (BAY&SEA) CKD STMD 8615 SYRUP CANE 8616 SNAIL RAW 8617 TURTLE GREEN RAW Name: Shrt_Desc, Length: 8618, dtype: object
columns = [\'Water_(g)\', \'Shrt_Desc\'] zinc_copper = food_info[columns] # 获取字段名为\'Water_(g)\', \'Shrt_Desc\'的这两列 print(zinc_copper)
# 获取以"(mg)"结尾的各列数据 col_names = food_info.columns.tolist() # print(col_names) milligram_columns = [] for items in col_names: if items.endswith("(mg)"): milligram_columns.append(items) milligram_df = food_info[milligram_columns] print(milligram_df)
3. 对数据的简单处理:
import pandas food_info = pandas.read_csv(\'food_info.csv\') # food_info.head(3) # print(food_info.shape) # print(food_info[\'Iron_(mg)\']) # Iron_(mg)这一列的单位是mg,将其转为mg,对其值除以1000 div_1000 = food_info[\'Iron_(mg)\'] / 1000 # print(div_1000) # 对每行数据中的其中两列进行计算 water_energy = food_info[\'Water_(g)\'] * food_info[\'Energ_Kcal\'] # print(food_info.shape) # DateFrame结构插入一列,字段名为\'water_energy\',值为water_energy的数据 food_info[\'water_energy\'] = water_energy # print(food_info[[\'Water_(g)\', \'Energ_Kcal\', \'water_energy\']]) # print(food_info.shape) # 求某列的最大值 max_calories = food_info[\'Energ_Kcal\'].max() # print(max_calories) # 对指定字段排序,inplace=False将排序后的结果生成一个新的DataFrame,inplace=True则在原来的基础上进行排序,默认升序排序 # food_info.sort_values(\'Sodium_(mg)\', inplace=True) # print(food_info[\'Sodium_(mg)\']) a = food_info.sort_values(\'Sodium_(mg)\', inplace=False, ascending=False) # ascending=False 使用降序排序 # print(food_info[\'Sodium_(mg)\']) # print(a[\'Sodium_(mg)\'])
4. 对数据的常规操作
import pandas as pd import numpy as np titanic_survival = pd.read_csv(\'titanic_train.csv\') # titanic_survival.head() age = titanic_survival[\'Age\'] # print(age.loc[0:10]) age_is_null = pd.isnull(age) # 迭代判断值是否为空,结果可以作为一个索引 # print(age_is_null) age_null_true = age[age_is_null] # 获取值为空的数据集 # print(age_null_true) print(len(age_null_true)) # 判断一共有多少个空数据 # 求平均值,应用不为空的数据集求 good_ages = age[age_is_null == False] # 获取值不为空的数据集 # print(good_ages) correct_mean_age = sum(good_ages) / len(good_ages) # 求平均 print(correct_mean_age) # 或者使用pandas内置的求均值函数,自动去除空数据 correct_mean_age = age.mean() # 求平均,将空值舍弃 print(correct_mean_age) # pivot_table方法默认求平均值,如果需求是求平均aggfunc参数可以不写 # index tells the method which column to group by # values is the column that we want to apply the calculation to # aggfunc specifies the calculation we want to perform passenger_surival = titanic_survival.pivot_table(index=\'Pclass\', values=\'Survived\', aggfunc=np.mean) # 对index相同的分别求平均值 print(passenger_surival) # 分组对多列求和 # port_stats = titanic_survival.pivot_table(index="Embarked", values=[\'Fare\', "Survived"], aggfunc=np.sum) # ,分别对价格和存活人数求和 # print(port_stats) # 丢弃空值数据 drop_na_columns = titanic_survival.dropna(axis=1, inplace=False) # axis=1,以行为判断依据,数据为空,则从Dataframe中丢弃,inplace=False返回一个新的Dataframe对象,否则对当前对象做操作 # print(drop_na_columns) new_titanic_survival = titanic_survival.dropna(axis=0, subset=[\'Age\', \'Sex\'], inplace=False) # axis=0,以列为判断依据,需要指定判断列的字段,数据为空,则从Dataframe中丢弃 # print(new_titanic_survival) # 具体定位到某行某列 row_index_83_age = titanic_survival.loc[83, \'Age\'] row_index_766_pclass = titanic_survival.loc[766, \'Pclass\'] print(row_index_83_age) print(row_index_766_pclass) new_titanic_survival = titanic_survival.sort_values("Age", ascending=False) # 每行的年龄按降序排序 print(new_titanic_survival[0:10]) print(\'------------------------>\') titanic_reindexed = new_titanic_survival.reset_index(drop=True) # 重置每行的索引值 print(titanic_reindexed[0:20]) # 自定义函数,对每行或每列逐个使用 def null_count(column): column_null = pd.isnull(column) null = column[column_null] return len(null) column_null_count = titanic_survival.apply(null_count, axis=0) # 通过自定义函数,统计每列为空的个数 print(column_null_count) def which_class(row): pclass = row[\'Pclass\'] if pclass == 1: return \'First Class\' elif pclass == 2: return \'Second Class\' elif pclass == 3: return \'Third Class\' else: return \'Unknow\' classes = titanic_survival.apply(which_class, axis=1) # 通过自定义函数,替换每行的Pclass值, 注意axis=1 print(classes)
5. 配合numpy将数据载入后进行预处理
import pandas as pd import numpy as np fandango = pd.read_csv(\'fandango_score_comparison.csv\') # print(type(fandango)) # 返回一个新的dataframe,返回的新数据以设定的值为index,并将丢弃index值为空的数据,drop=True,丢弃为索引的列,否则不丢弃 fandango_films = fandango.set_index(\'FILM\', drop=False) # fandango_films # print(fandango_films.index) # 按索引获取数据 fandango_films["Avengers: Age of Ultron (2015)" : "Hot Tub Time Machine 2 (2015)"] fandango_films.loc["Avengers: Age of Ultron (2015)" : "Hot Tub Time Machine 2 (2015)"] fandango_films.loc[\'Southpaw (2015)\'] movies = [\'Kumiko, The Treasure Hunter (2015)\', \'Do You Believe? (2015)\', \'Ant-Man (2015)\'] fandango_films.loc[movies] # def func(coloumn): # return np.std(coloumn) types = fandango_films.dtypes # print(types) float_columns = types[types.values == \'float64\'].index # 获取特定类型的数据的索引 # print(float_columns) float_df = fandango_films[float_columns] # 获取特定类型的数据 # print(float_df.dtypes) # float_df # print(float_df) deviations = float_df.apply(lambda x: np.std(x)) # 计算每列标准差 print(deviations) # print(\'----------------------->\') # print(float_df.apply(func)) # help(np.std) rt_mt_user = float_df[[\'RT_user_norm\', \'Metacritic_user_nom\']] print(rt_mt_user.apply(np.std, axis=1)) # 计算每行数据标准差 # rt_mt_user.apply(np.std, axis=0)
三、DataFrame中的Series
Series为DateFrame中一行或一列的数据结构
1. 获取一个Series对象
import pandas as pd from pandas import Series fandango = pd.read_csv(\'fandango_score_comparison.csv\') series_film = fandango[\'FILM\'] # 获取fandango中FILM这一列 # print(type(series_film)) print(series_film[0:5]) series_rt = fandango[\'RottenTomatoes\'] # 获取fandango中RottenTomatoes这一列 print(series_rt[0:5])
2. 对Series对象的一些常规操作
file_names = series_film.values # 获取series_film的所有值,返回值为一个<class \'numpy.ndarray\'> # print(type(file_names)) # print(file_names) rt_scores = series_rt.values # print(rt_scores) series_custom = Series(rt_scores, index=file_names) # 构建一个新的Series, index为file_names, value为rt_scores # help(Series) print(series_custom[[\'Top Five (2014)\', \'Night at the Museum: Secret of the Tomb (2014)\']]) # 以index获取数据 # print(type(series_custom)) print(\'--------------------------------->\') print(series_custom[5:10]) # 切片操作 # print(series_custom[["\'71 (2015)"]]) original_index = series_custom.index.tolist() # 获取所有的index值并将其转为list # print(original_index) sorted_index = sorted(original_index) # 对list排序 # print(sort_index) sorted_by_index = series_custom.reindex(sorted_index) # 以排过序的list重新为series_custom设置索引 print(sorted_by_index) sc2 = series_custom.sort_index() # 以index按升序排序整个series_custom # print(sc2) sc3 = series_custom.sort_values(ascending=False) # 以values按降序排序整个series_custom print(sc3) import numpy as np # print(np.add(series_custom, series_custom)) #将series_custom当成一个矩阵,使用numpy进行计算 print(np.sin(series_custom)) print(np.max(series_custom)) # series_custom > 50 series_greater_than_50 = series_custom[series_custom > 50] # 获取series_custom的值大于50的数据 # series_greater_than_50 criteria_one = series_custom > 50 criteria_two = series_custom < 75 both_criteria = series_custom[criteria_one & criteria_two] # 获取series_custom的值大于50且小于75的数据 print(both_criteria) rt_critics = Series(fandango[\'RottenTomatoes\'].values, index=fandango[\'FILM\']) rt_users = Series(fandango[\'RottenTomatoes_User\'].values, index=fandango[\'FILM\']) rt_mean = (rt_critics + rt_users) / 2 # 将rt_critics 和 rt_users的值相加除以2 print(rt_mean)
以上是关于机器学习基础 --- pandas的基本使用的主要内容,如果未能解决你的问题,请参考以下文章
机器学习之pandas基础——pandas与概率论的简短碰面
一篇博文教你玩转pandas,轻松应付办公场景(机器学习基础)