线性同余方程

Posted headboy2002

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了线性同余方程相关的知识,希望对你有一定的参考价值。

如何解方程a*x≡b(mod m)呢?因为a*x-b|m, 故令a*x-b=-y*m,即a*x+m*y=b。根据Bezout定理,该方程有解当且仅当gcd(a,m)|b。我们把等式两边同乘以gcd(a,m)/b,得到a*x0+m*y0=gcd(a, m)。这个方程可以用扩展欧几里得算法求得得到x0。等式是怎么乘的,就再把它除回来,也就是x=x0*b/gcd(a,m)。关于方程的通解,a*x+k*lcm(a,m)+m*y-k*lcm(a,m)=b,lcm(a,m)=a*m/gcd(a,m),也就是a*(x+k*m/gcd(a,m))+m*(y+k*a/gcd(a,m))=b,所以方程的通解为所有与x同余m/gcd(a,m)的数。若要求最小正整数解,令p=m/gcd(a,m),然后x=(x%p+p)%p即可。

ll Exgcd(ll a, ll b, ll &x, ll &y)
{
	if (b == 0)
	{
		x = 1;
		y = 0;
		return a;
	}
	ll d = Exgcd(b, a%b, x, y);
	ll tx = x;
	x = y;
	y = tx - (a / b) * y;
	return d;
}

ll Gcd(ll a, ll b)
{
	return b ? Gcd(b, a%b) : a;
}

ll Eq(ll a, ll b, ll m)
{
	ll gcd = Gcd(a, m);
	if (b%gcd)
		return -1;
	ll x, y;
	Exgcd(a, m, x, y);
	x = x * b / gcd;
	ll p = m / gcd;
	return (x%p+p) % p;
}

  

以上是关于线性同余方程的主要内容,如果未能解决你的问题,请参考以下文章

线性同余方程的求解

HDU-1573-X问题(线性同余方程组)

解线性同余方程组

POJ 2115C Looooops[一元线性同余方程]

《夜深人静写算法》数论篇 - (11) 线性同余

《夜深人静写算法》数论篇 - (11) 线性同余