将cifar10数据集保存为可见图片

Posted dudu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了将cifar10数据集保存为可见图片相关的知识,希望对你有一定的参考价值。

下载cifar10数据集:http://www.cs.toronto.edu/~kriz/cifar.html

选择cifar-10-python.tar.gz进行下载。

1 建立 main.py

import tensorflow as tf
import os
import scipy.misc
import cifar10_input



def inputs_origin(data_dir):
    filenames = [os.path.join(data_dir, \'data_batch_%d\' % i) for i in range(1, 6)]
    for f in filenames:
        print(f)
        if not tf.gfile.Exists(f):
            raise ValueError(\'Failed to find file\' + f)
    filenames_queue =tf.train.string_input_producer(filenames)
    read_input = cifar10_input.read_cifar10(filenames_queue)
    reshaped_image = tf.cast(read_input.uint8image,tf.float32)
    print(reshaped_image)
    return reshaped_image

if __name__ == \'__main__\':
    with tf.Session() as sess:
        reshaped_image = inputs_origin(\'cifar-10-batches-py\')
        threads = tf.train.start_queue_runners(sess=sess)
        print(threads)
        sess.run(tf.global_variables_initializer())
        if not os.path.exists(\'cifar-10-batches-py/raw/\'):
            os.makedirs(\'cifar-10-batches-py/raw/\')
        for i in range(30):
            image = sess.run(reshaped_image)
            scipy.misc.toimage(image).save(\'cifar-10-batches-py/raw/%d.jpg\' %i)

2 建立 cifar10_input.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

# Process images of this size. Note that this differs from the original CIFAR
# image size of 32 x 32. If one alters this number, then the entire model
# architecture will change and any model would need to be retrained.
IMAGE_SIZE = 24

# Global constants describing the CIFAR-10 data set.
NUM_CLASSES = 10
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000


def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.
  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.
  Args:
    filename_queue: A queue of strings with the filenames to read from.
  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass

  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 50
  result.width = 50
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result


def _generate_image_and_label_batch(image, label, min_queue_examples,
                                    batch_size, shuffle):
  """Construct a queued batch of images and labels.
  Args:
    image: 3-D Tensor of [height, width, 3] of type.float32.
    label: 1-D Tensor of type.int32
    min_queue_examples: int32, minimum number of samples to retain
      in the queue that provides of batches of examples.
    batch_size: Number of images per batch.
    shuffle: boolean indicating whether to use a shuffling queue.
  Returns:
    images: Images. 4D tensor of [batch_size, height, width, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  """
  # Create a queue that shuffles the examples, and then
  # read \'batch_size\' images + labels from the example queue.
  num_preprocess_threads = 16
  if shuffle:
    images, label_batch = tf.train.shuffle_batch(
        [image, label],
        batch_size=batch_size,
        num_threads=num_preprocess_threads,
        capacity=min_queue_examples + 3 * batch_size,
        min_after_dequeue=min_queue_examples)
  else:
    images, label_batch = tf.train.batch(
        [image, label],
        batch_size=batch_size,
        num_threads=num_preprocess_threads,
        capacity=min_queue_examples + 3 * batch_size)

  # Display the training images in the visualizer.
  tf.summary.image(\'images\', images)

  return images, tf.reshape(label_batch, [batch_size])


def distorted_inputs(data_dir, batch_size):
  """Construct distorted input for CIFAR training using the Reader ops.
  Args:
    data_dir: Path to the CIFAR-10 data directory.
    batch_size: Number of images per batch.
  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  """
  filenames = [
      os.path.join(data_dir, \'data_batch_%d.bin\' % i) for i in xrange(1, 6)
  ]
  for f in filenames:
    if not tf.gfile.Exists(f):
      raise ValueError(\'Failed to find file: \' + f)

  # Create a queue that produces the filenames to read.
  filename_queue = tf.train.string_input_producer(filenames)

  # Read examples from files in the filename queue.
  read_input = read_cifar10(filename_queue)
  reshaped_image = tf.cast(read_input.uint8image, tf.float32)

  height = IMAGE_SIZE
  width = IMAGE_SIZE

  # Image processing for training the network. Note the many random
  # distortions applied to the image.

  # Randomly crop a [height, width] section of the image.
  distorted_image = tf.random_crop(reshaped_image, [height, width, 3])

  # Randomly flip the image horizontally.
  distorted_image = tf.image.random_flip_left_right(distorted_image)

  # Because these operations are not commutative, consider randomizing
  # the order their operation.
  distorted_image = tf.image.random_brightness(distorted_image, max_delta=63)
  distorted_image = tf.image.random_contrast(
      distorted_image, lower=0.2, upper=1.8)

  # Subtract off the mean and divide by the variance of the pixels.
  float_image = tf.image.per_image_standardization(distorted_image)

  # Set the shapes of tensors.
  float_image.set_shape([height, width, 3])
  read_input.label.set_shape([1])

  # Ensure that the random shuffling has good mixing properties.
  min_fraction_of_examples_in_queue = 0.4
  min_queue_examples = int(
      NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * min_fraction_of_examples_in_queue)
  print(\'Filling queue with %d CIFAR images before starting to train. \'
        \'This will take a few minutes.\' % min_queue_examples)

  # Generate a batch of images and labels by building up a queue of examples.
  return _generate_image_and_label_batch(
      float_image,
      read_input.label,
      min_queue_examples,
      batch_size,
      shuffle=True)


def inputs(eval_data, data_dir, batch_size):
  """Construct input for CIFAR evaluation using the Reader ops.
  Args:
    eval_data: bool, indicating if one should use the train or eval data set.
    data_dir: Path to the CIFAR-10 data directory.
    batch_size: Number of images per batch.
  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  """
  if not eval_data:
    filenames = [
        os.path.join(data_dir, \'data_batch_%d.bin\' % i) for i in xrange(1, 6)
    ]
    num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
  else:
    filenames = [os.path.join(data_dir, \'test_batch.bin\')]
    num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL

  for f in filenames:
    if not tf.gfile.Exists(f):
      raise ValueError(\'Failed to find file: \' + f)

  # Create a queue that produces the filenames to read.
  filename_queue = tf.train.string_input_producer(filenames)

  # Read examples from files in the filename queue.
  read_input = read_cifar10(filename_queue)
  reshaped_image = tf.cast(read_input.uint8image, tf.float32)

  height = IMAGE_SIZE
  width = IMAGE_SIZE

  # Image processing for evaluation.
  # Crop the central [height, width] of the image.
  resized_image = tf.image.resize_image_with_crop_or_pad(
      reshaped_image, width, height)

  # Subtract off the mean and divide by the variance of the pixels.
  float_image = tf.image.per_image_standardization(resized_image)

  # Set the shapes of tensors.
  float_image.set_shape([height, width, 3])
  read_input.label.set_shape([1])

  # Ensure that the random shuffling has good mixing properties.
  min_fraction_of_examples_in_queue = 0.4
  min_queue_examples = int(
      num_examples_per_epoch * min_fraction_of_examples_in_queue)

  # Generate a batch of images and labels by building up a queue of examples.
  return _generate_image_and_label_batch(
      float_image,
      read_input.label,
      min_queue_examples,
      batch_size,
      shuffle=False)

 显示部分图片:

 

以上是关于将cifar10数据集保存为可见图片的主要内容,如果未能解决你的问题,请参考以下文章

cifar-10 图片可视化

tf.keras在 cifar 上训练 AlexNet,数据集过大导致 OOM

将自己数据转化为cifar10支持的lmdb

CIFAR-10 图像识别

python实现cifar10数据集的可视化

《30天吃掉那只 TensorFlow2.0》 1-2 图片数据建模流程范例 (cifar2图片分类问题)