将cifar10数据集保存为可见图片
Posted dudu
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了将cifar10数据集保存为可见图片相关的知识,希望对你有一定的参考价值。
下载cifar10数据集:http://www.cs.toronto.edu/~kriz/cifar.html
选择cifar-10-python.tar.gz进行下载。
1 建立 main.py
import tensorflow as tf import os import scipy.misc import cifar10_input def inputs_origin(data_dir): filenames = [os.path.join(data_dir, \'data_batch_%d\' % i) for i in range(1, 6)] for f in filenames: print(f) if not tf.gfile.Exists(f): raise ValueError(\'Failed to find file\' + f) filenames_queue =tf.train.string_input_producer(filenames) read_input = cifar10_input.read_cifar10(filenames_queue) reshaped_image = tf.cast(read_input.uint8image,tf.float32) print(reshaped_image) return reshaped_image if __name__ == \'__main__\': with tf.Session() as sess: reshaped_image = inputs_origin(\'cifar-10-batches-py\') threads = tf.train.start_queue_runners(sess=sess) print(threads) sess.run(tf.global_variables_initializer()) if not os.path.exists(\'cifar-10-batches-py/raw/\'): os.makedirs(\'cifar-10-batches-py/raw/\') for i in range(30): image = sess.run(reshaped_image) scipy.misc.toimage(image).save(\'cifar-10-batches-py/raw/%d.jpg\' %i)
2 建立 cifar10_input.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf # Process images of this size. Note that this differs from the original CIFAR # image size of 32 x 32. If one alters this number, then the entire model # architecture will change and any model would need to be retrained. IMAGE_SIZE = 24 # Global constants describing the CIFAR-10 data set. NUM_CLASSES = 10 NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000 NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000 def read_cifar10(filename_queue): """Reads and parses examples from CIFAR10 data files. Recommendation: if you want N-way read parallelism, call this function N times. This will give you N independent Readers reading different files & positions within those files, which will give better mixing of examples. Args: filename_queue: A queue of strings with the filenames to read from. Returns: An object representing a single example, with the following fields: height: number of rows in the result (32) width: number of columns in the result (32) depth: number of color channels in the result (3) key: a scalar string Tensor describing the filename & record number for this example. label: an int32 Tensor with the label in the range 0..9. uint8image: a [height, width, depth] uint8 Tensor with the image data """ class CIFAR10Record(object): pass result = CIFAR10Record() # Dimensions of the images in the CIFAR-10 dataset. # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the # input format. label_bytes = 1 # 2 for CIFAR-100 result.height = 50 result.width = 50 result.depth = 3 image_bytes = result.height * result.width * result.depth # Every record consists of a label followed by the image, with a # fixed number of bytes for each. record_bytes = label_bytes + image_bytes # Read a record, getting filenames from the filename_queue. No # header or footer in the CIFAR-10 format, so we leave header_bytes # and footer_bytes at their default of 0. reader = tf.FixedLengthRecordReader(record_bytes=record_bytes) result.key, value = reader.read(filename_queue) # Convert from a string to a vector of uint8 that is record_bytes long. record_bytes = tf.decode_raw(value, tf.uint8) # The first bytes represent the label, which we convert from uint8->int32. result.label = tf.cast( tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32) # The remaining bytes after the label represent the image, which we reshape # from [depth * height * width] to [depth, height, width]. depth_major = tf.reshape( tf.strided_slice(record_bytes, [label_bytes], [label_bytes + image_bytes]), [result.depth, result.height, result.width]) # Convert from [depth, height, width] to [height, width, depth]. result.uint8image = tf.transpose(depth_major, [1, 2, 0]) return result def _generate_image_and_label_batch(image, label, min_queue_examples, batch_size, shuffle): """Construct a queued batch of images and labels. Args: image: 3-D Tensor of [height, width, 3] of type.float32. label: 1-D Tensor of type.int32 min_queue_examples: int32, minimum number of samples to retain in the queue that provides of batches of examples. batch_size: Number of images per batch. shuffle: boolean indicating whether to use a shuffling queue. Returns: images: Images. 4D tensor of [batch_size, height, width, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ # Create a queue that shuffles the examples, and then # read \'batch_size\' images + labels from the example queue. num_preprocess_threads = 16 if shuffle: images, label_batch = tf.train.shuffle_batch( [image, label], batch_size=batch_size, num_threads=num_preprocess_threads, capacity=min_queue_examples + 3 * batch_size, min_after_dequeue=min_queue_examples) else: images, label_batch = tf.train.batch( [image, label], batch_size=batch_size, num_threads=num_preprocess_threads, capacity=min_queue_examples + 3 * batch_size) # Display the training images in the visualizer. tf.summary.image(\'images\', images) return images, tf.reshape(label_batch, [batch_size]) def distorted_inputs(data_dir, batch_size): """Construct distorted input for CIFAR training using the Reader ops. Args: data_dir: Path to the CIFAR-10 data directory. batch_size: Number of images per batch. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ filenames = [ os.path.join(data_dir, \'data_batch_%d.bin\' % i) for i in xrange(1, 6) ] for f in filenames: if not tf.gfile.Exists(f): raise ValueError(\'Failed to find file: \' + f) # Create a queue that produces the filenames to read. filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue. read_input = read_cifar10(filename_queue) reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE width = IMAGE_SIZE # Image processing for training the network. Note the many random # distortions applied to the image. # Randomly crop a [height, width] section of the image. distorted_image = tf.random_crop(reshaped_image, [height, width, 3]) # Randomly flip the image horizontally. distorted_image = tf.image.random_flip_left_right(distorted_image) # Because these operations are not commutative, consider randomizing # the order their operation. distorted_image = tf.image.random_brightness(distorted_image, max_delta=63) distorted_image = tf.image.random_contrast( distorted_image, lower=0.2, upper=1.8) # Subtract off the mean and divide by the variance of the pixels. float_image = tf.image.per_image_standardization(distorted_image) # Set the shapes of tensors. float_image.set_shape([height, width, 3]) read_input.label.set_shape([1]) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int( NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * min_fraction_of_examples_in_queue) print(\'Filling queue with %d CIFAR images before starting to train. \' \'This will take a few minutes.\' % min_queue_examples) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch( float_image, read_input.label, min_queue_examples, batch_size, shuffle=True) def inputs(eval_data, data_dir, batch_size): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. data_dir: Path to the CIFAR-10 data directory. batch_size: Number of images per batch. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ if not eval_data: filenames = [ os.path.join(data_dir, \'data_batch_%d.bin\' % i) for i in xrange(1, 6) ] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN else: filenames = [os.path.join(data_dir, \'test_batch.bin\')] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL for f in filenames: if not tf.gfile.Exists(f): raise ValueError(\'Failed to find file: \' + f) # Create a queue that produces the filenames to read. filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue. read_input = read_cifar10(filename_queue) reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE width = IMAGE_SIZE # Image processing for evaluation. # Crop the central [height, width] of the image. resized_image = tf.image.resize_image_with_crop_or_pad( reshaped_image, width, height) # Subtract off the mean and divide by the variance of the pixels. float_image = tf.image.per_image_standardization(resized_image) # Set the shapes of tensors. float_image.set_shape([height, width, 3]) read_input.label.set_shape([1]) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int( num_examples_per_epoch * min_fraction_of_examples_in_queue) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch( float_image, read_input.label, min_queue_examples, batch_size, shuffle=False)
显示部分图片:
以上是关于将cifar10数据集保存为可见图片的主要内容,如果未能解决你的问题,请参考以下文章