[HNOI 2018]道路

Posted NaVi_Awson

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[HNOI 2018]道路相关的知识,希望对你有一定的参考价值。

Description

题库链接

给出一棵含有 \(n\) 个叶子节点的二叉树,对于每个非叶子节点的节点,其与左儿子相连的边为公路,其与右儿子相连的边为铁路。对于每个节点,选择一条与其儿子相连的铁路或公路。对于每个叶子节点 \(u\) ,含有三个参数 \(a,b,c\) ,记 \(u\) 到根节点一共需要经过 \(x\) 条未选择的公路与 \(y\) 条未选择的铁路,其代价为

\[c_u \cdot (a_u + x) \cdot (b_u + y)\]

求最小的总代价和。

\(n \le 20000\)\(1 \le a_i,b_i \le 60\)\(1 \le c_i \le 10^9\) ,二叉树深度不超过 \(40\)

Solution

传说中的普及 \(dp\)

\(f_{i,j,k}\)\(i\) 这个节点到根节点路径上一共需要经过 \(j\) 条未选择的公路与 \(k\) 条未选择的铁路,其子树中最小的代价和。

答案就是 \(f_{1,0,0}\)

转移就是考虑当前节点选择铁路还是选择公路。

时间复杂度和空间复杂度为 \(O(40^2n)\)

Code

#include <bits/stdc++.h>
#define ll long long
#define F(o, i, j) (1ll*c[o]*(i+a[o])*(j+b[o]))
using namespace std;
const int N = 20000+5;

int n, a[N], b[N], c[N], ls[N], rs[N];
ll f[N][41][41];

void dfs(int o, int dep) {
    if (o < 0) return;
    int l = ls[o], r = rs[o];
    dfs(l, dep+1), dfs(r, dep+1);
    for (int i = 0; i <= dep; i++)
    for (int j = 0; j <= dep; j++) {
        if (l < 0 && r < 0) f[o][i][j] = min(F(-l, i+1, j)+F(-r, i, j), F(-l, i, j)+F(-r, i, j+1));
        else if (l < 0) f[o][i][j] = min(F(-l, i+1, j)+f[r][i][j], F(-l, i, j)+f[r][i][j+1]);
        else if (r < 0) f[o][i][j] = min(f[l][i+1][j]+F(-r, i, j), f[l][i][j]+F(-r, i, j+1));
        else f[o][i][j] = min(f[l][i+1][j]+f[r][i][j], f[l][i][j]+f[r][i][j+1]);
    }
}
void work() {
    scanf("%d", &n);
    memset(f, 127/3, sizeof(f));
    for (int i = 1; i < n; i++) scanf("%d%d", &ls[i], &rs[i]);
    for (int i = 1; i <= n; i++) scanf("%d%d%d", &a[i], &b[i], &c[i]);
    dfs(1, 0);
    printf("%lld\n", f[1][0][0]);
}
int main() {work(); return 0; }

以上是关于[HNOI 2018]道路的主要内容,如果未能解决你的问题,请参考以下文章

HNOI2018 道路

题解 [HNOI/AHOI2018]道路 (动态规划)

BZOJ3575 HNOI2014 道路阻塞

[HNOI2014]道路堵塞

bzoj 3575: [Hnoi2014]道路堵塞

bzoj3575 [Hnoi2014]道路堵塞