Spark学习之路 Spark的广播变量和累加器
Posted 扎心了,老铁
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark学习之路 Spark的广播变量和累加器相关的知识,希望对你有一定的参考价值。
一、概述
在spark程序中,当一个传递给Spark操作(例如map和reduce)的函数在远程节点上面运行时,Spark操作实际上操作的是这个函数所用变量的一个独立副本。这些变量会被复制到每台机器上,并且这些变量在远程机器上的所有更新都不会传递回驱动程序。通常跨任务的读写变量是低效的,但是,Spark还是为两种常见的使用模式提供了两种有限的共享变量:广播变(broadcast variable)和累加器(accumulator)
二、广播变量broadcast variable
2.1 为什么要将变量定义成广播变量?
如果我们要在分布式计算里面分发大对象,例如:字典,集合,黑白名单等,这个都会由Driver端进行分发,一般来讲,如果这个变量不是广播变量,那么每个task就会分发一份,这在task数目十分多的情况下Driver的带宽会成为系统的瓶颈,而且会大量消耗task服务器上的资源,如果将这个变量声明为广播变量,那么知识每个executor拥有一份,这个executor启动的task会共享这个变量,节省了通信的成本和服务器的资源。
2.2 广播变量图解
错误的,不使用广播变量
正确的,使用广播变量的情况
2.3 如何定义一个广播变量?
val a = 3 val broadcast = sc.broadcast(a)
2.4 如何还原一个广播变量?
val c = broadcast.value
2.5 定义广播变量需要的注意点?
变量一旦被定义为一个广播变量,那么这个变量只能读,不能修改
2.6 注意事项
1、能不能将一个RDD使用广播变量广播出去?
不能,因为RDD是不存储数据的。可以将RDD的结果广播出去。
2、 广播变量只能在Driver端定义,不能在Executor端定义。
3、 在Driver端可以修改广播变量的值,在Executor端无法修改广播变量的值。
4、如果executor端用到了Driver的变量,如果不使用广播变量在Executor有多少task就有多少Driver端的变量副本。
5、如果Executor端用到了Driver的变量,如果使用广播变量在每个Executor中只有一份Driver端的变量副本。
三、累加器
3.1 为什么要将一个变量定义为一个累加器?
在spark应用程序中,我们经常会有这样的需求,如异常监控,调试,记录符合某特性的数据的数目,这种需求都需要用到计数器,如果一个变量不被声明为一个累加器,那么它将在被改变时不会再driver端进行全局汇总,即在分布式运行时每个task运行的只是原始变量的一个副本,并不能改变原始变量的值,但是当这个变量被声明为累加器后,该变量就会有分布式计数的功能。
3.2 图解累加器
错误的图解
正确的图解
3.3 如何定义一个累加器?
val a = sc.accumulator(0)
3.4 如何还原一个累加器?
val b = a.value
3.5 注意事项
1、 累加器在Driver端定义赋初始值,累加器只能在Driver端读取最后的值,在Excutor端更新。
2、累加器不是一个调优的操作,因为如果不这样做,结果是错的
以上是关于Spark学习之路 Spark的广播变量和累加器的主要内容,如果未能解决你的问题,请参考以下文章