Eigen学习

Posted 山里的小勇子

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Eigen学习相关的知识,希望对你有一定的参考价值。

  Eigen 是一个基于C++的线性代数库,其中实现大量常用的线性代数算法,包括常规矩阵计算,矩阵变换,矩阵分解,矩阵块操作。Eigen 广泛地应用在开源项目中,例如OpenCV,PCL(Point Cloud Library),ROS等。其实Eigen中算法都可以在matlab中找到,但是由于matlab是半开源的。所以,如果想在自己的项目中使用,还是要义无反顾地选择Eigen。Eigen目前的版本是3.3.4(2018.4.21)。

  来看Eigen官网的第一个例子:

  

 1 #include <iostream>
 2 #include <eigen3/Eigen/Dense>
 3 
 4 using Eigen::MatrixXd;
 5 
 6 int main(int argc ,char** argv)
 7 {
 8     MatrixXd:: m(2,2);
 9     m(0,0) = 3;
10     m(1,0) = 2.5;
11     m(0,1) = -1;
12     m(1,1) = m(1,0) + m(0,1);
13     std::cout<<m<<std::endl;
14     return 0;
15 }

首先,代码引入了eigen的头文件,这里Eigen/Dense 一次引入了多个常用的模块。

  程序首先定义了一个2 x 2的矩阵。根据Eigen的定义 ,MatrixXd,这个类型可以拆成三部分来看,Matrix-X-d,Matrix表示定义的是一个矩阵,X表示定义的矩阵维度不确定,d表示double,指矩阵中每一个元素都是double类型的。m(2,2)指定了矩阵的大小是2x2的。从第9 行到第12 行则为矩阵中的元素进行了赋值操作。

  最后输出矩阵。

  在系统中运行输出如下:

  

 

来看第二个例子,区分一下矩阵(Matrix)和向量(Vector)的区别:

 1 #include <iostream>
 2 #include <eigen3/Eigen/Dense>
 3 
 4 using namespace Eigen;
 5 uisng namespace std;
 6 
 7 int main(int argc ,char** argv)
 8 {
    // 创建一个3 x 3的随机矩阵,每个元素的范围都在(-1,1)之间
9 MatrixXd m = MatrixXd::Random(3,3);
    // 将每个元素的范围设置在 (10,110)之间,MatrixXd::Cosntant() 用于产生每个元素都相同的矩阵,这里每个元素都是1.2
10 m = (m + MatrixXd::Constant(3,3,1.2)) * 50; 11 cout<<"m="<<endl<<m<<endl;
    //创建一个长度为 3 的向量,
12 VectorXd v(3);
    //为向量元素赋值,这里Eigen 将 << 操作符重载了。
13 v<<1,2,3;
    //矩阵和向量做乘法并输出结果
14 cout<<"m*v"<<m*v<<endl; 15 16 return 0; 17 }

运行结果如下:

    

 

 上面的例子展示生成矩阵和向量的不同方法,其实向量就是列数为1 的矩阵。

 

以上是关于Eigen学习的主要内容,如果未能解决你的问题,请参考以下文章

视觉slam学习:初识slam,三维空间刚体运动代码实战,Eigen库的使用

Eigen学习

EIgen基本运算学习

EIgen基本运算学习

一个使用 Eigen 库和 jni 的简单 ndk 项目

Eigen库学习---Map类