GYM - 101147 A.The game of Osho

Posted Pneuis

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了GYM - 101147 A.The game of Osho相关的知识,希望对你有一定的参考价值。

题意:

  一共有G个子游戏,一个子游戏有Bi, Ni两个数字。两名玩家开始玩游戏,每名玩家从N中减去B的任意幂次的数,直到不能操作判定为输。问谁最终能赢。

题解:

  当Bi为奇数的时候,显然Bi的所有次幂都是奇数,那么答案只需要判断Ni的奇偶性即可。

  那么我们只需讨论Bi为偶数的情况。

  用到了二项展开的一个定理。(B+1-1)^x展开后只有两种形式,即k*(B+1)+1或k*(B+1)+B。所以问题就变成在Ni%(Bi+1)个石子中取1或B个石子。

  Ni%(Bi+1)为B的时候有两种后续状态,0或B-1,所以sg值为2。

技术分享图片
#include <bits/stdc++.h>
using namespace std;
int t;
int g;
int b, n;
int ans;
int main() {
    freopen("powers.in","r",stdin);
    scanf("%d", &t);
    while(t--) {
        ans = 0;
        scanf("%d", &g);
        while(g--) {
            scanf("%d%d", &b, &n);
            if(b&1) ans ^= n&1;
            else {
                int tt = n%(b+1);
                if(tt==b) ans ^= 2;
                else ans ^= tt&1;
            }
        }
        if(ans) puts("1");
        else puts("2");
    }
}
View Code

 

以上是关于GYM - 101147 A.The game of Osho的主要内容,如果未能解决你的问题,请参考以下文章

Gym101147B

Codeforces Gym - 101147J Whistle's New Car

GYM - 101147 B.Street

Gym 101147G 第二类斯特林数

GYM - 101147 C.The Wall

GYM - 101147 J.Whistle's New Car