Numpy学习100例

Posted wemo

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Numpy学习100例相关的知识,希望对你有一定的参考价值。

1、导入numpy模块

import numpy as np

2、查看numpy版本信息

print(np.__version__)

numpy的主要对象的多维数组Ndarray。Numpy中维度(dimensions)叫做轴(axis),轴的个数叫做秩。

3、通过列表创建一位数组

np.array([1, 2, 3])

4、通过列表创建一个二维数组

np.array([(1, 2, 3),(4, 5, 6)])

5、创建全为0的二维数组

np.zeros((3,3))

6、创建全为1的三维数组

np.ones((2,3,4))

7、创建一维等差数组

np.arange(5)

8、创建二维等差数组

np.arange(6).reshape(2,3)

9、创建二维单位矩阵

np.eye(3)

10、创建等间隔一维数组(1到10之间,共6个数,数字之间间隔相同)

np.linspace(1, 10, num=6)

11、创建二维随机数组

np.random.rand(2,3)

下面说明一下random模块中的一些常用函数的用法

  • numpy.random.rand(d0, d1, ..., dn):生成一个[0,1)之间的随机浮点数或N维浮点数组。
  • numpy.random.randn(d0, d1, ..., dn):生成一个浮点数或N维浮点数组,取数范围:正态分布的随机样本数。
  • numpy.random.randint(low, high=None, size=None, dtype=‘l‘):生成一个整数或N维整数数组,取数范围:若high不为None时,取[low,high)之间随机整数,否则取值[0,low)之间随机整数。
  • numpy.random.seed():使得随机数据可预测。当我们设置相同的seed,每次生成的随机数相同。如果不设置seed,则每次会生成不同的随机数

以上是关于Numpy学习100例的主要内容,如果未能解决你的问题,请参考以下文章

《深度学习100例》数据和代码

《深度学习100例》数据和代码

统计机器学习-3-numpy100题

统计机器学习-3-numpy100题

深度学习100例—— 使用PyTorch实现验证码识别 | 第4例

机器学习入门——numpy100练习题