Spark版本定制七:Spark Streaming源码解读之JobScheduler内幕实现和深度思考

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark版本定制七:Spark Streaming源码解读之JobScheduler内幕实现和深度思考相关的知识,希望对你有一定的参考价值。

本期内容:

1,JobScheduler内幕实现

2,JobScheduler深度思考

 

摘要:JobScheduler是Spark Streaming整个调度的核心,其地位相当于Spark Core上的调度中心中的DAGScheduler!

         

一、JobScheduler内幕实现

问:JobScheduler是在什么地方生成的?

答:JobScheduler是在StreamingContext实例化时产生的,从StreamingContext的源码第183行中可以看出:

      private[streaming] val scheduler = new JobScheduler(this)

 

问:Spark Streaming为啥要设置两条线程? 
答:setMaster指定的两条线程是指程序运行的时候至少需要两条线程。一条线程用于接收数据,需要不断的循环。另一条是处理线程,是我们自己指定的线程数用于作业处理。如StreamingContext的start()方法所示:

def start(): Unit = synchronized {
    state match {
      case INITIALIZED =>
        startSite.set(DStream.getCreationSite())
        StreamingContext.ACTIVATION_LOCK.synchronized {
          StreamingContext.assertNoOtherContextIsActive()
          try {
            validate()

            // Start the streaming scheduler in a new thread, so that thread local properties
            // like call sites and job groups can be reset without affecting those of the
            // current thread.
//Spark Streaming内部启动的线程,用于整个作业的调度 ThreadUtils.runInNewThread("streaming-start") { sparkContext.setCallSite(startSite.get) sparkContext.clearJobGroup() sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false") scheduler.start() } state = StreamingContextState.ACTIVE } catch { case NonFatal(e) => logError("Error starting the context, marking it as stopped", e) scheduler.stop(false) state = StreamingContextState.STOPPED throw e } StreamingContext.setActiveContext(this) } shutdownHookRef = ShutdownHookManager.addShutdownHook( StreamingContext.SHUTDOWN_HOOK_PRIORITY)(stopOnShutdown) // Registering Streaming Metrics at the start of the StreamingContext assert(env.metricsSystem != null) env.metricsSystem.registerSource(streamingSource) uiTab.foreach(_.attach()) logInfo("StreamingContext started") case ACTIVE => logWarning("StreamingContext has already been started") case STOPPED => throw new IllegalStateException("StreamingContext has already been stopped") } }

进入JobScheduler源码:

/**
JobScheduler负责逻辑层面的Job,并将其物理级别的运行在Spark之上 * This class schedules jobs to be run on Spark. It uses the JobGenerator to generate * the jobs and runs them using a thread pool.
*/ private[streaming] class JobScheduler(val ssc: StreamingContext) extends Logging { //通过JobSet集合,不断地存放接收到的Job private val jobSets: java.util.Map[Time, JobSet] = new ConcurrentHashMap[Time, JobSet]
//设置并行度,默认为1,想要修改作业运行的并行度在spark-conf或者应用程序中修改此值就中
为什么要修改并发度呢?
答:有时候应用程序中有多个输出,会导致多个job的执行,都是在一个batchDurations里面,job之间执行无需互相等待,所以可以通过设置此值并发执行!
不同的Batch,线程池中有很多的线程,也可以并发运行! private val numConcurrentJobs = ssc.conf.getInt("spark.streaming.concurrentJobs", 1)
//将逻辑级别的Job转化为物理级别的job就是通过newDaemonFixedThreadPool线程实现的 private val jobExecutor = ThreadUtils.newDaemonFixedThreadPool(numConcurrentJobs, "streaming-job-executor")
//实例化JobGenerator private val jobGenerator = new JobGenerator(this) val clock = jobGenerator.clock val listenerBus = new StreamingListenerBus()
//下面三个是说在JobScheduler启动时实例化 // These two are created only when scheduler starts. // eventLoop not being null means the scheduler has been started and not stopped var receiverTracker: ReceiverTracker = null // A tracker to track all the input stream information as well as processed record number var inputInfoTracker: InputInfoTracker = null private var eventLoop: EventLoop[JobSchedulerEvent] = null def start(): Unit = synchronized { if (eventLoop != null) return // scheduler has already been started logDebug("Starting JobScheduler") eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") { override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event) override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e) } eventLoop.start() // attach rate controllers of input streams to receive batch completion updates for { inputDStream <- ssc.graph.getInputStreams rateController <- inputDStream.rateController } ssc.addStreamingListener(rateController) listenerBus.start(ssc.sparkContext) receiverTracker = new ReceiverTracker(ssc) inputInfoTracker = new InputInfoTracker(ssc) receiverTracker.start() jobGenerator.start() logInfo("Started JobScheduler") }

二、JobScheduler深度思考

下面从应用程序的输出方法print()入手,反推Job的生成过程:

1.点击应用程序中的print()方法后,跳入DStream的print():

/**
 * Print the first ten elements of each RDD generated in this DStream. This is an output
 * operator, so this DStream will be registered as an output stream and there materialized.
 */
def print(): Unit = ssc.withScope {
  print(10)
}

2.再次点击上面红线标记的print()方法:

   

/**
 * Print the first num elements of each RDD generated in this DStream. This is an output
 * operator, so this DStream will be registered as an output stream and there materialized.
 */
def print(num: Int): Unit = ssc.withScope {
  def foreachFunc: (RDD[T], Time) => Unit = {
    (rdd: RDD[T], time: Time) => {
      val firstNum = rdd.take(num + 1)
      // scalastyle:off println
      println("-------------------------------------------")
      println("Time: " + time)
      println("-------------------------------------------")
      firstNum.take(num).foreach(println)
      if (firstNum.length > num) println("...")
      println()
      // scalastyle:on println
    }
  }
  foreachRDD(context.sparkContext.clean(foreachFunc), displayInnerRDDOps = false)
}

从图中红色标记的代码可以得出:SparkStreaming最终执行的时候还是对RDD进行各种逻辑级别的操作!

3.再次点击图上的foreachRDD进入foreachRDD方法:

  

/**
 * Apply a function to each RDD in this DStream. This is an output operator, so
 * ‘this‘ DStream will be registered as an output stream and therefore materialized.
 * @param foreachFunc foreachRDD function
 * @param displayInnerRDDOps Whether the detailed callsites and scopes of the RDDs generated
 *                           in the `foreachFunc` to be displayed in the UI. If `false`, then
 *                           only the scopes and callsites of `foreachRDD` will override those
 *                           of the RDDs on the display.
 */
private def foreachRDD(
    foreachFunc: (RDD[T], Time) => Unit,
    displayInnerRDDOps: Boolean): Unit = {
  new ForEachDStream(this,
    context.sparkContext.clean(foreachFunc, false), displayInnerRDDOps).register()
}

4.点击上图的ForEachDStream进入ForEachDStream类并找到了generateJob方法:

   

/**
 * An internal DStream used to represent output operations like DStream.foreachRDD.
 * @param parent        Parent DStream
 * @param foreachFunc   Function to apply on each RDD generated by the parent DStream
 * @param displayInnerRDDOps Whether the detailed callsites and scopes of the RDDs generated
 *                           by `foreachFunc` will be displayed in the UI; only the scope and
 *                           callsite of `DStream.foreachRDD` will be displayed.
 */
private[streaming]
class ForEachDStream[T: ClassTag] (
    parent: DStream[T],
    foreachFunc: (RDD[T], Time) => Unit,
    displayInnerRDDOps: Boolean
  ) extends DStream[Unit](parent.ssc) {

  override def dependencies: List[DStream[_]] = List(parent)

  override def slideDuration: Duration = parent.slideDuration

  override def compute(validTime: Time): Option[RDD[Unit]] = None
  //根据时间间隔不断的产生Job
  override def generateJob(time: Time): Option[Job] = {
    parent.getOrCompute(time) match {
      case Some(rdd) =>
        val jobFunc = () => createRDDWithLocalProperties(time, displayInnerRDDOps) {
//基于时间生成的RDD,由于是输出,所以是最后一个RDD,接下来我们只要找出哪儿调用ForEachDStream的generateJob方法,就能知道job最终的生成 foreachFunc(rdd, time) } Some(new Job(time, jobFunc)) case None => None } } }

5.上一讲中我们得出了如下的流程:

    streamingcontext.start-->jobscheduler.start-->receiverTracker.start()-->JobGenterator.start()-->EventLoop-->processEvent()-->generateJobs()-->jobScheduler.receiverTracker.allocateBlocksToBatch(time)-->graph.generateJobs(time)  

 其中最后的graph.generateJobs是DSTreamGraph的方法,进入之:

   

def generateJobs(time: Time): Seq[Job] = {
  logDebug("Generating jobs for time " + time)
  val jobs = this.synchronized {
    //此时的outputStream就是forEachDStream
    outputStreams.flatMap { outputStream =>
      val jobOption = outputStream.generateJob(time)
      jobOption.foreach(_.setCallSite(outputStream.creationSite))
      jobOption
    }
  }
  logDebug("Generated " + jobs.length + " jobs for time " + time)
  jobs
}

private val outputStreams = new ArrayBuffer[DStream[_]]()

通过查看DStream的子类继承结构和上面的ForEachDStream的generateJob方法,得出DStream的子类中只有ForEachDStream override了DStream的generateJob!
最终得出结论:
真正Job的生成是通过ForeachDStream的generateJob来生成的,此时的job是逻辑级别的,真正被物理级别的调用是在JobGenerator中generateJob方法中:
/** Generate jobs and perform checkpoint for the given `time`.  */
  private def generateJobs(time: Time) {
    // Set the SparkEnv in this thread, so that job generation code can access the environment
    // Example: BlockRDDs are created in this thread, and it needs to access BlockManager
    // Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
    SparkEnv.set(ssc.env)
    Try {
      jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
      graph.generateJobs(time) // generate jobs using allocated block
    } match {
      case Success(jobs) =>
        val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
        jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
      case Failure(e) =>
        jobScheduler.reportError("Error generating jobs for time " + time, e)
    }
    eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
  }

进入jobScheduler.submitJobSet方法:

//将逻辑级别的Job转化为物理级别的job就是通过newDaemonFixedThreadPool线程实现的
  private val jobExecutor =
    ThreadUtils.newDaemonFixedThreadPool(numConcurrentJobs, "streaming-job-executor")
def submitJobSet(jobSet: JobSet) {
    if (jobSet.jobs.isEmpty) {
      logInfo("No jobs added for time " + jobSet.time)
    } else {
      listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))
      jobSets.put(jobSet.time, jobSet)
      jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
      logInfo("Added jobs for time " + jobSet.time)
    }
  }

至此,整个job的生成、执行就非常清晰了,最后总结如下:

从上一讲中,我们得知JobScheduler包含两个核心组件JobGenerator和ReceiverTracker,它们分别负责Job的生成和源数据的接收,

ReceiverTracker启动后会导致运行在Executor端的Receiver启动并且接收数据,ReceiverTracker会记录Receiver接收到的数据meta信息,  

JobGenerator的启动导致每隔BatchDuration,就调用DStreamGraph生成RDD Graph,并生成Job,

JobScheduler中的线程池来提交封装的JobSet对象(时间值,Job,数据源的meta)。Job中封装了业务逻辑,导致最后一个RDD的action被触发,

被DAGScheduler真正调度在Spark集群上执行该Job。

 

特别感谢王家林老师的独具一格的讲解:

王家林老师名片:

中国Spark第一人

新浪微博:http://weibo.com/ilovepains

微信公众号:DT_Spark

博客:http://blog.sina.com.cn/ilovepains

QQ:1740415547

YY课堂:每天20:00现场授课频道68917580

以上是关于Spark版本定制七:Spark Streaming源码解读之JobScheduler内幕实现和深度思考的主要内容,如果未能解决你的问题,请参考以下文章

Spark版本定制第13天:Driver容错

Spark版本定制第10天:流数据生命周期和思考

Spark版本定制第8天:RDD生成生命周期彻底

Spark版本定制第6天:Job动态生成和深度思考

Spark版本定制八:Spark Streaming源码解读之RDD生成全生命周期彻底研究和思考

Spark版本定制第7天:JobScheduler内幕实现和深度思考