WordCounter Teamwork

Posted VectorLu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了WordCounter Teamwork相关的知识,希望对你有一定的参考价值。

基础任务

WordCountPro GitHub

Contributor 贡献占比
蒋志远 37%
李露阳 30%
鲁平 33%

PSP

PSP2.1 PSP阶段 预估耗时实际耗时(分钟) 实际耗时(分钟)
Planning 计划 20 30
Estimate 估计这个任务需要多少时间 10 10
Development 开发 530 740
- Analysis - 需求分析(包括学习新技术) 100 160
- Design Spec - 生成设计文档 100 150
- Coding Standard - 代码规范 (为目前的开发制定合适的规范) 10 10
- Design - 具体设计 30 30
- Coding - 具体编码 200 240
- Code Review - 代码复审 30 30
- Test - 测试(自我测试,修改代码,提交修改) 60 120
Reporting 报告 180 320
- Test Report - 测试报告 40 65
- Size Measurement - 计算工作量 10 15
- Postmortem & Process Improvement Plan - 事后总结, 并提出过程改进计划 130 240
合计 740 1100

模块划分

将程序划分成三个部分,分别管控 IO 、核心功能的实现,和主函数。
因为核心功能比较复杂,其中我负责和李露阳结对编程,实现核心功能 WordCounter.java,编写主要的单元测试,并且教他优化代码,编写 Javadoc。
各模块设计如下:

1. Main

/**
 * com.hust.wcPro
 * Created by Blues on 2018/3/27.
 */

import java.util.HashMap;

public class Main {
    static public void main(String[] args) {

        IOController io_control = new IOController();
        
        String valid_file = io_control.get(args);
        if (valid_file.equals("")) {
            return ;
        }
        
        WordCounter wordcounter = new WordCounter();
        
        HashMap<String, Integer> result = wordcounter.count(valid_file);

        io_control.save(result);

    }
}

Main函数负责所有接口的调用,逻辑很简单,即IO获取有效的文件参数,调用 WordCounter 类的核心函数,IO 将结果排序后存入 result.txt 中。

2. IOController

IOController 类负责管控 io,具体设计如下:

class IOController {
    IOController() {}
    
    /**
     * Parses the main function arguments
     * 
     * @param args the main function arguments
     * @return a valid file name
     */
    public String get(String[] args);

    /**
     * Saves the result sorted
     * 
     * @param result the result contain word as key as count as value
     * @return the state code of operation
     */
    public int save(HashMap<String, Integer> result);
}
  • get() 负责解析主函数的参数,返回一个合法的,存在的文件名。
  • save() 负责将输出传入的结果排序后输出到 result.txt 文件中。

3. WordCounter

WordCounter 类负责实现核心功能 count() 函数,判断合法的单词,处理老师要求的各种特殊情况,统计传入的文件中的各字符的数量,结果以 HashMap 的形式返回。

/**
 * The {@code WordCounter} class is a multi-purpose text file
 * counter, which can judge a legal word and count word numbers,
 * to put the result to a {@code HashMap}.
 * <br><br>
 *
 * @author VectorLu
 * @author YangLeee
 * @since JDK1.8
 */
public class WordCounter {
    
    WordCounter() {
    }
    
     /**
     * Return whether the argument is in the English alphabet.
     * @param c
     * @return {@code true} if the argument is in the English alphabet,
     * otherwise {@code false}.
     */
    private boolean isEngChar(char c);
    
    /**
     * Return whether the argument is hyphen, which is {@code -}.
     * @param c
     * @return {@code true} if the argument is hyphen
     * otherwise {@code false}.
     */
    private boolean isHyphen(char c);
    
    /**
     * Counts the words in the specific file
     * 
     * @param filename the file to be counted
     * @return the result saves the word(lowercased) as key and count as value
     */
    public HashMap<String, Integer> count(String filename);
}

项目管理

为了能高效的合作以及更好的项目管理,我们选择使用 Gradle 进行项目的管理以及依赖管理,使用也可以更好的使用 JUnit5 进行单元测试(其中曾经混用过 JUnit4,并且发现 JUnit5 更为严谨,后全部迁移至 JUnit5)。因为多成员合作,我们使用 Git 进行源代码管理。

build.gradle 来自我们组组员蒋志远同学

其中,Gradle 的配置文件 build.gradle 内容如下,可供参考:

buildscript {
    repositories {
        mavenCentral()
    }
    dependencies {
        classpath \'org.junit.platform:junit-platform-gradle-plugin:1.1.0\'
    }
}

plugins {
    id \'com.gradle.build-scan\' version \'1.12.1\'
    id \'java\'
    id \'eclipse\'
    id \'idea\'
    id \'maven\'
}

buildScan {
    licenseAgreementUrl = "https://gradle.com/terms-of-service"
    licenseAgree = "yes"
}

apply plugin: \'org.junit.platform.gradle.plugin\'

int javaVersion = Integer.valueOf((String) JavaVersion.current().getMajorVersion())
if (javaVersion < 10) apply plugin: \'jacoco\'

jar {
    baseName = \'wcPro\'
    version = \'0.0.1\'
    manifest {
        attributes \'Main-Class\': \'Main\'
    }
}

repositories {
    mavenCentral()
}

dependencies {
    testCompile (
        \'org.junit.jupiter:junit-jupiter-api:5.0.3\',
        \'org.json:json:20090211\'
    )

    testRuntime(
        \'org.junit.jupiter:junit-jupiter-engine:5.0.3\',
        \'org.junit.vintage:junit-vintage-engine:4.12.1\',
        \'org.junit.platform:junit-platform-launcher:1.0.1\',
        \'org.junit.platform:junit-platform-runner:1.0.1\'
    )
}

task wrapper(type: Wrapper) {
    description = \'Generates gradlew[.bat] scripts\'
    gradleVersion = \'4.6\'
}

测试

1. 单元测试

白盒测试的测试方法有代码检查法、静态结构分析法、静态质量度量法、逻辑覆盖法、基本路径测试法、域测试、符号测试、路径覆盖和程序变异。
白盒测试法的覆盖标准有逻辑覆盖、循环覆盖和基本路径测试。其中逻辑覆盖包括语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、条件组合覆盖和路径覆盖。

要保证测试到每一个方法,而复杂的方法,可能需要使用多种测试方法,如边界测试,路径覆盖。

public 方法测试

单元测试我们测试的粒度是到接口,因为项目主要包含 3 个大的接口,所以我们要对其分别进行测试。主要接口:

  • IOController.get()
  • IOController.save()
  • WordCounter.count()

我们设计了 UnitTest 类来进行接口测试,我主要负责对 WordCounter.count() 进行单元测试(包括边界测试),测试了非法路径、针对老师要求的五种特殊情况做了详细的测试。

第一,由连续的若干个英文字母组成的字符串,例如,software,
第二,用连字符(即短横线)所连接的若干个英文单词也视为1个单词,例如,content-based,视为1个单词。
注意,单词不区分大小写,不考虑英文以外的其他语言,且仅考虑半角。
有关单词识别的部分典型情况的说明:
第一,Let’s,这种包含单引号的情况,视为2个单词,即let和s。
第二,night-,带短横线的单词,视为1个单词,即night。
第三,“I,带双引号的单词,视为1个单词,即i。
第四,TABLE1-2,带数字的单词,视为1个单词,即table。
第五,(see Box 3–2).8885d_c01_016,带数字、常用字符和单词的情况,视为4个单词,即see, box, d, c。

单元测试内容(使用了 @DisplayName 来说明,而且由测试方法名易知其测试目的,如下:

使用命令 gradle test 进行测试

或者在 Idea 里直接点击运行测试:

class UnitTest {

    UnitTest() {}

    String fileParentPath = "src/test/resources/";

    @Test
    void testCountEmptyFile() {
        String fileName = "emptyFile.txt";
        String relativePath = fileParentPath + fileName;
        WordCounter wc = new WordCounter();
        HashMap result = wc.count(relativePath);
        assertEquals(0, result.size());
    }

    @Test
    @DisplayName("Border test: wc.count(endWithHyphen.txt)")
    void testCountFileEndWithHyphen() {
        String fileName = "endWithHyphen.txt";
        String relativePath = fileParentPath + fileName;
        WordCounter wc = new WordCounter();
        HashMap result = wc.count(relativePath);
        assertEquals(1, result.size());
    }

    @Test
    @DisplayName("Bord test: wc.count(startWithHyphen.txt)")
    void testCountFileStartWithHyphen() {
        String fileName = "startWithHyphen.txt";
        String relativePath = fileParentPath + fileName;
        WordCounter wc = new WordCounter();
        HashMap result = wc.count(relativePath);
        assertEquals(true, result.containsKey("hyphen"));
    }

    @Test
    @DisplayName("Bord test: wc.count(startWithHyphen.txt)")
    void testNumberStartWithHyphen() {
        String fileName = "startWithHyphen.txt";
        String relativePath = fileParentPath + fileName;
        WordCounter wc = new WordCounter();
        HashMap result = wc.count(relativePath);
        assertEquals(1, result.size());
    }

    @Test
    @DisplayName("Bord test: wc.count(startWithHyphen.txt)")
    void testCountFileWithQuatation() {
        String fileName = "withQuatation.txt";
        String relativePath = fileParentPath + fileName;
        WordCounter wc = new WordCounter();
        HashMap result = wc.count(relativePath);
        assertEquals(2, result.size());
    }


    @Test
    void testCountHyphen() {
        String fileName = "endWithHyphen.txt";
        String relativePath = fileParentPath + fileName;
        WordCounter wc = new WordCounter();
        HashMap result = wc.count(relativePath);
        HashMap expect = new HashMap(1);
        expect.put("hyphen", 1);
        assertEquals(expect.keySet(), result.keySet());
        for (Object key: expect.keySet()) {
            assertEquals((int)expect.get(key), (int)result.get(key));
        }
    }

    @Test
    @DisplayName("Border test: single quotation mark")
    void testCountSingleQuotationMark() {
        String fileName = "singleQuotationMark.txt";
        String relativePath = fileParentPath + fileName;
        WordCounter wc = new WordCounter();
        HashMap result = wc.count(relativePath);
        assertEquals(2, result.size());
    }

    @Test
    @DisplayName("Border test: double quotation mark")
    void testCountDoubleQuotationMark() {
        String fileName = "doubleQuotationMark.txt";
        String relativePath = fileParentPath + fileName;
        WordCounter wc = new WordCounter();
        HashMap result = wc.count(relativePath);
        assertEquals(1, result.size());
    }

    @Test
    @DisplayName("Border test: word with number")
    void testCountWordWithNumber() {
        String fileName = "wordWithNumber.txt";
        String relativePath = fileParentPath + fileName;
        WordCounter wc = new WordCounter();
        HashMap result = wc.count(relativePath);
        assertEquals(1, result.size());
    }

    @Test
    @DisplayName("Border test: word with multiple kinds of char")
    void testCountMultiple() {
        String fileName = "multiple.txt";
        String relativePath = fileParentPath + fileName;
        WordCounter wc = new WordCounter();
        HashMap result = wc.count(relativePath);
        assertEquals(4, result.size());
    }

}

private 方法测试

除了对于公有方法的测试,我还负责对私有方法进行测试。而对于无法没有访问权限的两个私有方法,要如何测试呢?(虽然 WordCounter.java 的两个私有方法十分简单,不过仍有测试以防万一的必要,另外也可以学习如何测试私有方法)。

很显然,碰到这种情况,我们只能用 reflection 即反射来处理,如下:

/**
 * Use reflection to test {@code private} method {@isEngChar()}
 */
@Test
void testIsEngChar() {
    /* a English Alphabet */
    final char[] ALPHABET = new char[52];

    final char[] NOT_ALPHABET = {\',\', \'&\', \'@\', \'\\\\\', \'/\'};

    char ch = \'a\';
    for (int i = 0; i < 26; i++) {
        ALPHABET[i] = ch;
        ch++;
    }
    ch = \'A\';
    for (int i = 26; i < 52; i++) {
        ALPHABET[i] = ch;
        ch++;
    }

    /* get a {@code Class} object of {@code WordCounter} */
    Class<WordCounter> classOfWordCounter = WordCounter.class;
    try {
        /* get an instance of target class */
        Object wcInstance = classOfWordCounter.newInstance();
        try {
            Method privateMethod = classOfWordCounter.getDeclaredMethod("isEngChar", char.class);
            privateMethod.setAccessible(true);
            for (char letter: ALPHABET) {
                try {
                    boolean result = (Boolean) privateMethod.invoke(wcInstance, new Object[]{letter});
                    assertEquals(true, result);
                } catch (InvocationTargetException e) {
                    e.printStackTrace();
                }
            }
            for (char notLetter: NOT_ALPHABET) {
                try {
                    boolean result = (Boolean) privateMethod.invoke(wcInstance, new Object[]{notLetter});
                    assertEquals(false, result);
                } catch (InvocationTargetException e) {
                    e.printStackTrace();
                }
            }

        } catch (NoSuchMethodException e) {
            e.printStackTrace();
        }
    } catch (InstantiationException e) {
        e.printStackTrace();
    } catch (IllegalAccessException e) {
        e.printStackTrace();
    }
}

2. 自动化黑盒测试

——来自我们组员蒋志远同学

为了能高效进行测试,我们采用了自动化脚本的方式进行测试能更好的进行压力测试。

首先我们需要大量的、正确的测试用例,每个测试用例的大小必须要足够大、内容也要保证正确。为此,手写测试用例是绝对不实际的,所以我们需要自动生成正确的测试用例。为了达到这个目的,我们组用 Python 写了一个简单的脚本,用来自动生成测试用例,内容随机但是大小可控:

from functools import reduce
import numpy as np
from numpy.random import randint
import json
import sys, os, re

elements = {
    "words": "abcdefghijklmnopqrstuvwxyz-",
    "symbol": "!@#$%^&*()~`_+=|\\\\:;\\"\'<>?/ \\t\\r\\n1234567890-"
}

def generate_usecase(configs):
    global elements
    
    path = os.path.join(\'test\', \'testcase\')
    result_path = os.path.join(\'test\', \'result\')
    if not os.path.exists(path):
        os.makedirs(path)
    if not os.path.exists(result_path):
        os.makedirs(result_path)
    for config_idx, config in enumerate(configs):
        word_dict = {}
        i = 0
        # 这里用于生成一个合法的单词
        while i < config[\'num_of_type\']:
            word_len = randint(*config[\'word_size\'])
            word_elements = randint(0, len(elements[\'words\']), word_len)
            word = np.array(list(elements[\'words\']))[word_elements]
            word = \'\'.join(word)
            # 这里将单词中不合法的 ‘-’ 转化删除掉
            word = re.sub(r\'-{2,}\',\'-\', word)
            word = re.sub(r\'^-*\', \'\', word)
            word = re.sub(r\'-*$\', \'\', word)
            if len(word) == 0: # 运气不好全是 ‘-’ 那么单词生成失败,从新生成单词 
                continue
            word_dict[word] = 0
            i += 1
        total_count = 0
        # 设置单词重复出现的次数
        for key in word_dict.keys():
            word_dict[key] = randint(*config[\'word_repeat\'])
            total_count += word_dict[key]
        word_dict_tmp = word_dict.copy()
        final_string = \'\'
        # 构造最终的用例文本
        for i in range(total_count):
            key, val = None, 0
            while (val == 0):
                key_tmp = list(word_dict_tmp.keys())[randint(len(word_dict))]
                val = word_dict_tmp[key_tmp]
                if val != 0:
                    key = key_tmp
                    word_dict_tmp[key_tmp] = val-1
            # 这里将单词的内容随机大小写
            word_upper_case = randint(0, 2, len(key))
            key = \'\'.join([s.upper() if word_upper_case[i] > 0 else s for i, s in enumerate(list(key))])
            final_string += key
            sep = \'\'
            # 构造合法的分隔符
            for _ in range(randint(*config[\'sep_size\'])):
                sep += elements[\'symbol\'][randint(0, len(elements[\'symbol\']))]
            if sep == \'-\':
                while sep == \'-\':
                    sep = elements[\'symbol\'][randint(0, len(elements[\'symbol\']))]
            final_string += sep

        with open(os.path.join(path, \'{}_usecase.txt\').format(config_idx), \'w\') as f:
            f.write(final_string)
                   
        sorted_key = sorted(word_dict.items(), key=lambda kv:(-kv[1], kv[0]))
        result = \'\'
        for key, val in sorted_key:
            result += key + \': \' + str(val) + \'\\n\'

        with open(os.path.join(path, \'{}_result_true.txt\'.format(config_idx)), \'w\') as f:
            f.write(result)

        print(\'test case {} generated\'.format(config_idx))

def main():
    config = sys.argv[-1]
    with open(config) as f:
        config = json.load(f)
    
    generate_usecase(config)

if __name__ == \'__main__\':
    main()

其中的配置文件的格式大致如下:

[
    {
        "num_of_type": 10,
        "word_size": [1, 10],
        "sep_size": [1,3],
        "word_repeat": [1, 300]
    },
    {
        "num_of_type": 20,
        "word_size": [1, 20],
        "sep_size": [1,3],
        "word_repeat": [20, 300]
    }
]

内容很简单,只需要配置有多少个单词,每个单词长度范围,分隔符的长度范围,每个单词重复出现的大小范围,即可生成相应的测试用例和正确的排序后的结果。

..........
YMtyibqY
zxz*^QtRWv*O=3KDvJKmpQb86MThOdnP
ZXZ>#aAys>&mthodnP>`qtRWv(QTRWV*YmTYiBqY^\\O9Zxz_?MthOdNP$ zxZ="MtHODnP#!yMTYibqY:o%2AaYS<#QTRwV8MTHOdnp!o#+MTHodNP)*QTRWV;YmtyiBQY	ZXz$hesS`aayS_#FKcU=)AAys;fKcu-$Z$MthoDnp
 YMTYIBqy/3aAyS!Zxz\'yMtyiBQY~1KdvjKMpQB\'@aAYs\'Z\'zXZ3z2hESs5aAys@yMtyiBQy4qtRWV3kDvJKMpQB:9yMTyIbqy_YmtyIBqY
KdvJKmpqB>YMtYibQy
>z2O
z`^FKCu$<QTRwv#<mtHOdnP%z+z"*FKCu9hESs<fkcu!YMtYiBqY"HesS9MtHODNp
ZxZ
.........

以上是关于WordCounter Teamwork的主要内容,如果未能解决你的问题,请参考以下文章

第三周作业---WordCounter

WordCounter思考

软件测试第二周作业 WordCounter

teamwork prc.小结

Teamwork-????????????????????????

第一次teamwork