numpy.linalg.norm(求范数)
Posted 理想几岁
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了numpy.linalg.norm(求范数)相关的知识,希望对你有一定的参考价值。
1、linalg=linear(线性)+algebra(代数),norm则表示范数。
2、函数参数
x_norm=np.linalg.norm(x, ord=None, axis=None, keepdims=False)
①x: 表示矩阵(也可以是一维)
②ord:范数类型
向量的范数:
矩阵的范数:
ord=1:列和的最大值
ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根
ord=∞:行和的最大值
③axis:处理类型
axis=1表示按行向量处理,求多个行向量的范数
axis=0表示按列向量处理,求多个列向量的范数
axis=None表示矩阵范数。
④keepding:是否保持矩阵的二维特性
True表示保持矩阵的二维特性,False相反
3、代码实现
import numpy as np x = np.array([ [0, 3, 4], [1, 6, 4]]) #默认参数ord=None,axis=None,keepdims=False print "默认参数(矩阵2范数,不保留矩阵二维特性):",np.linalg.norm(x) print "矩阵2范数,保留矩阵二维特性:",np.linalg.norm(x,keepdims=True) print "矩阵每个行向量求向量的2范数:",np.linalg.norm(x,axis=1,keepdims=True) print "矩阵每个列向量求向量的2范数:",np.linalg.norm(x,axis=0,keepdims=True) print "矩阵1范数:",np.linalg.norm(x,ord=1,keepdims=True) print "矩阵2范数:",np.linalg.norm(x,ord=2,keepdims=True) print "矩阵∞范数:",np.linalg.norm(x,ord=np.inf,keepdims=True) print "矩阵每个行向量求向量的1范数:",np.linalg.norm(x,ord=1,axis=1,keepdims=True)
结果显示:
4、总结
①矩阵的三种范数求法
②向量的三种范数求法
以上是关于numpy.linalg.norm(求范数)的主要内容,如果未能解决你的问题,请参考以下文章
python:numpy,详解:np.linalg.norm()求范数,计算两向量对应点欧式距离。
pytorch torch.norm(input, p=2) → floattorch.norm(input, p, dim, out=None) → Tensor(求范数)