day9-IO心得
Posted kiko0o0
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了day9-IO心得相关的知识,希望对你有一定的参考价值。
- Gevent协程
- Select\\Poll\\Epoll异步IO与事件驱动
- Python连接mysql数据库操作
- RabbitMQ队列
- Redis\\Memcached缓存
- Paramiko SSH
- Twsited网络框架
引子
到目前为止,我们已经学了网络并发编程的2个套路, 多进程,多线程,这哥俩的优势和劣势都非常的明显,我们一起来回顾下
协程
协程,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程。
协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。因此:
协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。
协程的好处:
- 无需线程上下文切换的开销
- 无需原子操作锁定及同步的开销
- "原子操作(atomic operation)是不需要synchronized",所谓原子操作是指不会被线程调度机制打断的操作;这种操作一旦开始,就一直运行到结束,中间不会有任何 context switch (切换到另一个线程)。原子操作可以是一个步骤,也可以是多个操作步骤,但是其顺序是不可以被打乱,或者切割掉只执行部分。视作整体是原子性的核心。
- 方便切换控制流,简化编程模型
- 高并发+高扩展性+低成本:一个CPU支持上万的协程都不是问题。所以很适合用于高并发处理。
缺点:
- 无法利用多核资源:协程的本质是个单线程,它不能同时将 单个CPU 的多个核用上,协程需要和进程配合才能运行在多CPU上.当然我们日常所编写的绝大部分应用都没有这个必要,除非是cpu密集型应用。
- 进行阻塞(Blocking)操作(如IO时)会阻塞掉整个程序
使用yield实现协程操作例子
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
import time import queue def consumer(name): print ( "--->starting eating baozi..." ) while True : new_baozi = yield print ( "[%s] is eating baozi %s" % (name,new_baozi)) #time.sleep(1) def producer(): r = con.__next__() r = con2.__next__() n = 0 while n < 5 : n + = 1 con.send(n) con2.send(n) print ( "\\033[32;1m[producer]\\033[0m is making baozi %s" % n ) if __name__ = = \'__main__\' : con = consumer( "c1" ) con2 = consumer( "c2" ) p = producer() |
看楼上的例子,我问你这算不算做是协程呢?你说,我他妈哪知道呀,你前面说了一堆废话,但是并没告诉我协程的标准形态呀,我腚眼一想,觉得你说也对,那好,我们先给协程一个标准定义,即符合什么条件就能称之为协程:
- 必须在只有一个单线程里实现并发
- 修改共享数据不需加锁
- 用户程序里自己保存多个控制流的上下文栈
- 一个协程遇到IO操作自动切换到其它协程
基于上面这4点定义,我们刚才用yield实现的程并不能算是合格的线程,因为它有一点功能没实现,哪一点呢?
Greenlet
greenlet是一个用C实现的协程模块,相比与python自带的yield,它可以使你在任意函数之间随意切换,而不需把这个函数先声明为generator
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
# -*- coding:utf-8 -*- from greenlet import greenlet def test1(): print ( 12 ) gr2.switch() print ( 34 ) gr2.switch() def test2(): print ( 56 ) gr1.switch() print ( 78 ) gr1 = greenlet(test1) gr2 = greenlet(test2) gr1.switch() |
感觉确实用着比generator还简单了呢,但好像还没有解决一个问题,就是遇到IO操作,自动切换,对不对?
Gevent
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
import gevent def func1(): print ( \'\\033[31;1m李闯在跟海涛搞...\\033[0m\' ) gevent.sleep( 2 ) print ( \'\\033[31;1m李闯又回去跟继续跟海涛搞...\\033[0m\' ) def func2(): print ( \'\\033[32;1m李闯切换到了跟海龙搞...\\033[0m\' ) gevent.sleep( 1 ) print ( \'\\033[32;1m李闯搞完了海涛,回来继续跟海龙搞...\\033[0m\' ) gevent.joinall([ gevent.spawn(func1), gevent.spawn(func2), #gevent.spawn(func3), ]) |
输出:
李闯在跟海涛搞...
李闯切换到了跟海龙搞...
李闯搞完了海涛,回来继续跟海龙搞...
李闯又回去跟继续跟海涛搞...
同步与异步的性能区别
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
import gevent def task(pid): """ Some non-deterministic task """ gevent.sleep( 0.5 ) print ( \'Task %s done\' % pid) def synchronous(): for i in range ( 1 , 10 ): task(i) def asynchronous(): threads = [gevent.spawn(task, i) for i in range ( 10 )] gevent.joinall(threads) print ( \'Synchronous:\' ) synchronous() print ( \'Asynchronous:\' ) asynchronous() |
上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn
。 初始化的greenlet列表存放在数组threads
中,此数组被传给gevent.joinall
函数,后者阻塞当前流程,并执行所有给定的greenlet。执行流程只会在 所有greenlet执行完后才会继续向下走。
遇到IO阻塞时会自动切换任务
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
from gevent import monkey; monkey.patch_all() import gevent from urllib.request import urlopen def f(url): print ( \'GET: %s\' % url) resp = urlopen(url) data = resp.read() print ( \'%d bytes received from %s.\' % ( len (data), url)) gevent.joinall([ gevent.spawn(f, \'https://www.python.org/\' ), gevent.spawn(f, \'https://www.yahoo.com/\' ), gevent.spawn(f, \'https://github.com/\' ), ]) |
通过gevent实现单线程下的多socket并发
server side
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
import sys import socket import time import gevent from gevent import socket,monkey monkey.patch_all() def server(port): s = socket.socket() s.bind(( \'0.0.0.0\' , port)) s.listen( 500 ) while True : cli, addr = s.accept() gevent.spawn(handle_request, cli) def handle_request(conn): try : while True : data = conn.recv( 1024 ) print ( "recv:" , data) conn.send(data) if not data: conn.shutdown(socket.SHUT_WR) except Exception as ex: print (ex) finally : conn.close() if __name__ = = \'__main__\' : server( 8001 ) |
client side
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
import socket HOST = \'localhost\' # The remote host PORT = 8001 # The same port as used by the server s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((HOST, PORT)) while True : msg = bytes( input ( ">>:" ),encoding = "utf8" ) s.sendall(msg) data = s.recv( 1024 ) #print(data) print ( \'Received\' , repr (data)) s.close() |
1 import socket 2 import threading 3 4 def sock_conn(): 5 6 client = socket.socket() 7 8 client.connect(("localhost",8001)) 9 count = 0 10 while True: 11 #msg = input(">>:").strip() 12 #if len(msg) == 0:continue 13 client.send( ("hello %s" %count).encode("utf-8")) 14 15 data = client.recv(1024) 16 17 print("[%s]recv from server:" % threading.get_ident(),data.decode()) #结果 18 count +=1 19 client.close() 20 21 22 for i in range(100): 23 t = threading.Thread(target=sock_conn) 24 t.start()
论事件驱动与异步IO
看图说话讲事件驱动模型
在UI编程中,常常要对鼠标点击进行相应,首先如何获得鼠标点击呢?
方式一:创建一个线程,该线程一直循环检测是否有鼠标点击,那么这个方式有以下几个缺点:
1. CPU资源浪费,可能鼠标点击的频率非常小,但是扫描线程还是会一直循环检测,这会造成很多的CPU资源浪费;如果扫描鼠标点击的接口是阻塞的呢?
2. 如果是堵塞的,又会出现下面这样的问题,如果我们不但要扫描鼠标点击,还要扫描键盘是否按下,由于扫描鼠标时被堵塞了,那么可能永远不会去扫描键盘;
3. 如果一个循环需要扫描的设备非常多,这又会引来响应时间的问题;
所以,该方式是非常不好的。
方式二:就是事件驱动模型
目前大部分的UI编程都是事件驱动模型,如很多UI平台都会提供onClick()事件,这个事件就代表鼠标按下事件。事件驱动模型大体思路如下:
1. 有一个事件(消息)队列;
2. 鼠标按下时,往这个队列中增加一个点击事件(消息);
3. 有个循环,不断从队列取出事件,根据不同的事件,调用不同的函数,如onClick()、onKeyDown()等;
4. 事件(消息)一般都各自保存各自的处理函数指针,这样,每个消息都有独立的处理函数;
事件驱动编程是一种编程范式,这里程序的执行流由外部事件来决定。它的特点是包含一个事件循环,当外部事件发生时使用回调机制来触发相应的处理。另外两种常见的编程范式是(单线程)同步以及多线程编程。
让我们用例子来比较和对比一下单线程、多线程以及事件驱动编程模型。下图展示了随着时间的推移,这三种模式下程序所做的工作。这个程序有3个任务需要完成,每个任务都在等待I/O操作时阻塞自身。阻塞在I/O操作上所花费的时间已经用灰色框标示出来了。
在单线程同步模型中,任务按照顺序执行。如果某个任务因为I/O而阻塞,其他所有的任务都必须等待,直到它完成之后它们才能依次执行。这种明确的执行顺序和串行化处理的行为是很容易推断得出的。如果任务之间并没有互相依赖的关系,但仍然需要互相等待的话这就使得程序不必要的降低了运行速度。
在多线程版本中,这3个任务分别在独立的线程中执行。这些线程由操作系统来管理,在多处理器系统上可以并行处理,或者在单处理器系统上交错执行。这使得当某个线程阻塞在某个资源的同时其他线程得以继续执行。与完成类似功能的同步程序相比,这种方式更有效率,但程序员必须写代码来保护共享资源,防止其被多个线程同时访问。多线程程序更加难以推断,因为这类程序不得不通过线程同步机制如锁、可重入函数、线程局部存储或者其他机制来处理线程安全问题,如果实现不当就会导致出现微妙且令人痛不欲生的bug。
在事件驱动版本的程序中,3个任务交错执行,但仍然在一个单独的线程控制中。当处理I/O或者其他昂贵的操作时,注册一个回调到事件循环中,然后当I/O操作完成时继续执行。回调描述了该如何处理某个事件。事件循环轮询所有的事件,当事件到来时将它们分配给等待处理事件的回调函数。这种方式让程序尽可能的得以执行而不需要用到额外的线程。事件驱动型程序比多线程程序更容易推断出行为,因为程序员不需要关心线程安全问题。
当我们面对如下的环境时,事件驱动模型通常是一个好的选择:
- 程序中有许多任务,而且…
- 任务之间高度独立(因此它们不需要互相通信,或者等待彼此)而且…
- 在等待事件到来时,某些任务会阻塞。
当应用程序需要在任务间共享可变的数据时,这也是一个不错的选择,因为这里不需要采用同步处理。
网络应用程序通常都有上述这些特点,这使得它们能够很好的契合事件驱动编程模型。
此处要提出一个问题,就是,上面的事件驱动模型中,只要一遇到IO就注册一个事件,然后主程序就可以继续干其它的事情了,只到io处理完毕后,继续恢复之前中断的任务,这本质上是怎么实现的呢?哈哈,下面我们就来一起揭开这神秘的面纱。。。。
Select\\Poll\\Epoll异步IO
http://www.cnblogs.com/alex3714/p/4372426.html
番外篇 http://www.cnblogs.com/alex3714/articles/5876749.html
select 多并发socket 例子
1 #_*_coding:utf-8_*_ 2 __author__ = \'Alex Li\' 3 4 import select 5 import socket 6 import sys 7 import queue 8 9 10 server = socket.socket() 11 server.setblocking(0) 12 13 server_addr = (\'localhost\',10000) 14 15 print(\'starting up on %s port %s\' % server_addr) 16 server.bind(server_addr) 17 18 server.listen(5) 19 20 21 inputs = [server, ] #自己也要监测呀,因为server本身也是个fd 22 outputs = [] 23 24 message_queues = {} 25 26 while True: 27 print("waiting for next event...") 28 29 readable, writeable, exeptional = select.select(inputs,outputs,inputs) #如果没有任何fd就绪,那程序就会一直阻塞在这里 30 31 for s in readable: #每个s就是一个socket 32 33 if s is server: #别忘记,上面我们server自己也当做一个fd放在了inputs列表里,传给了select,如果这个s是server,代表server这个fd就绪了, 34 #就是有活动了, 什么情况下它才有活动? 当然 是有新连接进来的时候 呀 35 #新连接进来了,接受这个连接 36 conn, client_addr = s.accept() 37 print("new connection from",client_addr) 38 conn.setblocking(0) 39 inputs.append(conn) #为了不阻塞整个程序,我们不会立刻在这里开始接收客户端发来的数据, 把它放到inputs里, 下一次loop时,这个新连接 40 #就会被交给select去监听,如果这个连接的客户端发来了数据 ,那这个连接的fd在server端就会变成就续的,select就会把这个连接返回,返回到 41 #readable 列表里,然后你就可以loop readable列表,取出这个连接,开始接收数据了, 下面就是这么干 的 42 43 message_queues[conn] = queue.Queue() #接收到客户端的数据后,不立刻返回 ,暂存在队列里,以后发送 44 45 else: #s不是server的话,那就只能是一个 与客户端建立的连接的fd了 46 #客户端的数据过来了,在这接收 47 data = s.recv(1024) 48 if data: 49 print("收到来自[%s]的数据:" % s.getpeername()[0], data) 50 message_queues[s].put(data) #收到的数据先放到queue里,一会返回给客户端 51 if s not in outputs: 52 outputs.append(s) #为了不影响处理与其它客户端的连接 , 这里不立刻返回数据给客户端 53 54 55 else:#如果收不到data代表什么呢? 代表客户端断开了呀 56 print("客户端断开了",s) 57 58 if s in outputs: 59 outputs.remove(s) #清理已断开的连接 60 61 inputs.remove(s) #清理已断开的连接 62 63 del message_queues[s] ##清理已断开的连接 64 65 66 for s in writeable: 67 try : 68 next_msg = message_queues[s].get_nowait() 69 70 except queue.Empty: 71 print("client [%s]" %s.getpeername()[0], "queue is empty..") 72 outputs.remove(s) 73 74 else: 75 print("sending msg to [%s]"%s.getpeername()[0], next_msg) 76 Javalucene4.0学习心得