Minimum spanning tree for each edge

Posted 啦啦啦

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Minimum spanning tree for each edge相关的知识,希望对你有一定的参考价值。

Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains n vertices and m edges.

For each edge (u,?v) find the minimal possible weight of the spanning tree that contains the edge (u,?v).

The weight of the spanning tree is the sum of weights of all edges included in spanning tree.

Input

First line contains two integers n and m (1?≤?n?≤?2·105,?n?-?1?≤?m?≤?2·105) — the number of vertices and edges in graph.

Each of the next m lines contains three integers ui,?vi,?wi (1?≤?ui,?vi?≤?n,?ui?≠?vi,?1?≤?wi?≤?109) — the endpoints of the i-th edge and its weight.

Output

Print m lines. i-th line should contain the minimal possible weight of the spanning tree that contains i-th edge.

The edges are numbered from 1 to m in order of their appearing in input.

Examples
Input
Copy
5 7
1 2 3
1 3 1
1 4 5
2 3 2
2 5 3
3 4 2
4 5 4
Output
9
8
11
8
8
8
9
题解:建最小支撑树,往里面加边u-v,那么容易想到的是ans=minTree-max{u-....-v这条链上的最大值}+va[u-v]。这里和LCA联系上了,记录从两端点向上跳2^k次得到的最大值,直到跳到u和v的公共祖先。
  1 #pragma warning(disable:4996)
  2 #include<bitset>
  3 #include<string>
  4 #include<cstdio>
  5 #include<cstring>
  6 #include<iostream>
  7 #include<algorithm>
  8 using namespace std;
  9 typedef long long ll;
 10 
 11 const int INF = 2e9 + 9;
 12 const int maxn = 200005;
 13 
 14 int n, m, tot, root;
 15 int head[maxn], pa[maxn][20], dp[maxn], Fa[maxn], as[maxn][20];
 16 
 17 struct node { int u, v, w; } a[maxn], b[maxn];
 18 struct mode { int to, va, next; } e[2*maxn];
 19 
 20 bool cmp(node& x, node& y) { return x.w < y.w; }
 21 
 22 void Inite() {
 23     tot = 0;
 24     memset(head, -1, sizeof(head));
 25 
 26     memset(as, 0, sizeof(as));
 27     memset(dp, 0, sizeof(dp));
 28     memset(pa, -1, sizeof(pa));
 29     for (int i = 1; i <= n; i++) Fa[i] = i;
 30 }
 31 
 32 void addedge(int u, int v, int w) {
 33     e[tot].to = v;
 34     e[tot].va = w;
 35     e[tot].next = head[u];
 36     head[u] = tot++;
 37 }
 38 
 39 int Find(int a) {
 40     if (a == Fa[a]) return a;
 41     return Fa[a] = Find(Fa[a]);
 42 }
 43 
 44 bool Union(int a, int b) {
 45     int x = Find(a), y = Find(b);
 46     if (x == y) return false;
 47     else {
 48         Fa[x] = y;
 49         return true;
 50     }
 51 }
 52 
 53 ll minTree() {
 54     sort(a + 1, a + m + 1, cmp);
 55     ll ans = 0;
 56     for (int i = 1; i <= m; i++) {
 57         if (Union(a[i].u, a[i].v)) {
 58             ans += a[i].w;
 59             root = a[i].u;
 60             addedge(a[i].u, a[i].v, a[i].w);
 61             addedge(a[i].v, a[i].u, a[i].w);
 62         }
 63     }
 64     return ans;
 65 }
 66 
 67 void DFS(int u, int p, int deep) {
 68     pa[u][0] = p;
 69     dp[u] = deep;
 70     for (int i = head[u]; i != -1; i = e[i].next) {
 71         int v = e[i].to;
 72         if (v == p) continue;
 73         as[v][0] = e[i].va;
 74         DFS(v, u, deep + 1);
 75     }
 76 }
 77 
 78 void getPa() {
 79     DFS(root, -1, 0);
 80     for (int i = 1; (1 << i) < n; i++) {
 81         for (int j = 1; j <= n; j++) {
 82             if (pa[j][i - 1] != -1) {
 83                 pa[j][i] = pa[pa[j][i - 1]][i - 1];
 84                 as[j][i] = max(as[j][i - 1], as[pa[j][i - 1]][i - 1]);
 85             }
 86         }
 87     }
 88 }
 89 
 90 int Lca(int u, int v) {
 91     if (dp[u] > dp[v]) swap(u, v);
 92     int ans = 0;
 93     for (int i = 0; i <= 19; i++) if ((dp[v] - dp[u]) >> i & 1) { ans = max(ans, as[v][i]); v = pa[v][i]; }
 94     if (u == v) return ans;
 95     for (int i = 19; i >= 0; i--) {
 96         if (pa[u][i] != pa[v][i]) {
 97             int tmp = max(as[u][i], as[v][i]);
 98             ans = max(ans, tmp);
 99             u = pa[u][i];
100             v = pa[v][i];
101         }
102     }
103     int tmp = max(as[u][0], as[v][0]);
104     ans = max(ans, tmp);
105     return ans;
106 }
107 
108 int main()
109 {
110     while (scanf("%d%d", &n, &m) != EOF) {
111         Inite();
112         for (int i = 1; i <= m; i++) scanf("%d%d%d", &a[i].u, &a[i].v, &a[i].w);
113         for (int i = 1; i <= m; i++) b[i].u = a[i].u, b[i].v = a[i].v, b[i].w = a[i].w;
114 
115         ll ans1 = minTree();
116         //cout << "root" << " " << root << endl;
117 
118         getPa();
119         for (int i = 1; i <= m; i++) {
120             int ans2 = Lca(b[i].u, b[i].v);
121             printf("%I64d\n", ans1 + b[i].w - ans2);
122         }
123     }
124     return 0;
125 }

 

以上是关于Minimum spanning tree for each edge的主要内容,如果未能解决你的问题,请参考以下文章

cf 609E.Minimum spanning tree for each edge

[CF609E]Minimum spanning tree for each edge

CF609E. Minimum spanning tree for each edge

百度之星2018资格赛t6三原色图(MST minimum spanning tree)

从特定的起始顶点提升 prim_minimum_spanning_tree

Minimum Spanning Tree