[Usaco2008 Nov]mixup2 混乱的奶牛 简单状压DP

Posted 神犇(shenben)

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[Usaco2008 Nov]mixup2 混乱的奶牛 简单状压DP相关的知识,希望对你有一定的参考价值。

1231: [Usaco2008 Nov]mixup2 混乱的奶牛

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 685  Solved: 383
[Submit][Status][Discuss]

Description

混乱的奶牛 [Don Piele, 2007] Farmer John的N(4 <= N <= 16)头奶牛中的每一头都有一个唯一的编号S_i (1 <= S_i <= 25,000). 奶牛为她们的编号感到骄傲, 所以每一头奶牛都把她的编号刻在一个金牌上, 并且把金牌挂在她们宽大的脖子上. 奶牛们对在挤奶的时候被排成一支"混乱"的队伍非常反感. 如果一个队伍里任意两头相邻的奶牛的编号相差超过K (1 <= K <= 3400), 它就被称为是混乱的. 比如说,当N = 6, K = 1时, 1, 3, 5, 2, 6, 4 就是一支"混乱"的队伍, 但是 1, 3, 6, 5, 2, 4 不是(因为5和6只相差1). 那么, 有多少种能够使奶牛排成"混乱"的队伍的方案呢?

Input

* 第 1 行: 用空格隔开的两个整数N和K

* 第 2..N+1 行: 第i+1行包含了一个用来表示第i头奶牛的编号的整数: S_i

Output

第 1 行: 只有一个整数, 表示有多少种能够使奶牛排成"混乱"的队伍的方案. 答案保证是 一个在64位范围内的整数.

Sample Input

4 1
3
4
2
1

Sample Output

2

输出解释:

两种方法分别是:
3 1 4 2
2 4 1 3

HINT

 

Source

分析:

首先观察N的范围,非常小。

这样我们就可以联想一下,用一个二进制数表示队伍中有哪些奶牛。

用f[i, j]表示 j状态下,队伍末尾奶牛编号为i的方案数

然后就可以枚举来寻找一个能往队伍末尾塞的奶牛编号

这个限制就是相邻的奶牛的编号相差超过K,并且这个奶牛不存在于队伍中

#include<cstdio>
#include<iostream>
#include<cstdlib>
using namespace std;
long long s[16],f[16][(1<<16)+1];
int main(){
    int n,K,m=0x3f3f3f3f;
    scanf("%d%d",&n,&K);
    for(int i=0;i<n;i++) scanf("%d",s+i);
    for(int i=0;i<n;i++) f[i][1<<i]=1;
    for(int i=0;i<(1<<n);i++){
        for(int j=0;j<n;j++){
            if(i&(1<<j)){
                for(int k=0;k<n;k++){
                    if(!(i&(1<<k))&&abs(s[j]-s[k])>K){
                        f[k][i|(1<<k)]+=f[j][i];
                    }
                }
            }
        }
    }
    long long ans=0;
    for(int i=0;i<n;i++){
        ans+=f[i][(1<<n)-1];
    }
    printf("%lld\\n",ans);
    return 0;
}

 

 

以上是关于[Usaco2008 Nov]mixup2 混乱的奶牛 简单状压DP的主要内容,如果未能解决你的问题,请参考以下文章

状压DP [Usaco2008 Nov]mixup2 混乱的奶牛

bzoj1231[Usaco2008 Nov]mixup2 混乱的奶牛(状压dp)

bzoj[Usaco2008 Nov]mixup2 混乱的奶牛 状压dp

bzoj1231[Usaco2008 Nov]mixup2 混乱的奶牛*

bzoj 1231 [Usaco2008 Nov]mixup2 混乱的奶牛

bzoj1231[Usaco2008 Nov]mixup2 混乱的奶牛