题意:给一棵带边权的树,多次询问$(x,y,l)$表示如果加一条连接$x$和$y$的长为$l$的边,所有点到$x$和到$y$的最短路减少了多少
先把题目中的图放上来(雾
考虑用lct维护,先把路径提出来,然后在splay上二分找到最短路大小改变的临界点$p$,再统计答案
容易看出$p\\rightarrow y$上的所有点的子树都对答案有贡献,对于一个点$p_1$,它和它的虚子树对答案的贡献都是$dis_{x,p_1}-dis_{p_1,y}-l$,即$dis_{x,y}-2dis_{p_1,y}-l$,于是我们可以维护每个点在splay中往左往右的答案(因为要换根,有区间翻转操作),再维护一下虚子树大小即可
车万题吼啊!
#include<stdio.h> #include<string.h> typedef long long ll; template<class C>void swap(C&a,C&b){a^=b^=a^=b;} int ch[100010][2],fa[100010],r[100010],siz[100010],vsiz[100010]; ll lsum[100010],rsum[100010],s[100010],v[100010]; #define ls ch[x][0] #define rs ch[x][1] void rev(int x){ r[x]^=1; swap(ls,rs); swap(lsum[x],rsum[x]); } void pushdown(int x){ if(r[x]){ if(ls)rev(ls); if(rs)rev(rs); r[x]=0; } } void pushup(int x){ siz[x]=siz[ls]+siz[rs]+vsiz[x]; s[x]=s[ls]+s[rs]+v[x]; lsum[x]=lsum[ls]+lsum[rs]+(s[ls]+v[x])*siz[rs]+vsiz[x]*s[ls]; rsum[x]=rsum[ls]+rsum[rs]+(s[rs]+v[x])*siz[ls]+vsiz[x]*s[rs]; } void rot(int x){ int y,z,f,b; y=fa[x]; z=fa[y]; f=ch[y][0]==x; b=ch[x][f]; fa[x]=z; fa[y]=x; if(b)fa[b]=y; ch[x][f]=y; ch[y][f^1]=b; if(ch[z][0]==y)ch[z][0]=x; if(ch[z][1]==y)ch[z][1]=x; pushup(y); pushup(x); } bool isrt(int x){return ch[fa[x]][0]!=x&&ch[fa[x]][1]!=x;} void gao(int x){ if(!isrt(x))gao(fa[x]); pushdown(x); } void splay(int x){ gao(x); int y,z; while(!isrt(x)){ y=fa[x]; z=fa[y]; if(!isrt(y))rot((ch[z][0]==y&&ch[y][0]==x)||(ch[z][1]==y&&ch[y][1]==x)?y:x); rot(x); } } void access(int x){ int y=0; while(x){ splay(x); vsiz[x]+=siz[rs]; rs=y; vsiz[x]-=siz[y]; pushup(x); y=x; x=fa[x]; } } void makert(int x){ access(x); splay(x); rev(x); } int find(int x,ll d){ int c=0; ll al=s[x]; while(x){ pushdown(x); if((s[ls]+v[x])*2<=al+d){ c=x; d-=(s[ls]+v[x])*2; x=rs; }else x=ls; } return c; } ll query(int x,int y,ll z){ if(x==y)return 0; makert(x); access(y); splay(y); if(s[y]<=z)return 0; x=find(y,z); splay(x); return siz[rs]*(s[x]-z)-rsum[rs]*2; } int h[100010],nex[200010],to[200010],M; void add(int a,int b){ M++; to[M]=b; nex[M]=h[a]; h[a]=M; } void dfs(int x){ for(int i=h[x];i;i=nex[i]){ if(to[i]!=fa[x]){ fa[to[i]]=x; dfs(to[i]); siz[x]+=siz[to[i]]; } } vsiz[x]=siz[x]; } int main(){ int n,m,i,x,y,z; while(~scanf("%d",&n)){ memset(h,0,sizeof(h)); memset(fa,0,sizeof(fa)); memset(ch,0,sizeof(ch)); memset(siz,0,sizeof(siz)); memset(r,0,sizeof(r)); memset(lsum,0,sizeof(lsum)); memset(rsum,0,sizeof(rsum)); memset(s,0,sizeof(s)); memset(v,0,sizeof(v)); M=0; for(i=1;i<=n;i++)siz[i]=1; for(i=1;i<n;i++){ scanf("%d%d%d",&x,&y,&z); v[n+i]=s[n+i]=z; add(x,n+i); add(n+i,x); add(y,n+i); add(n+i,y); } dfs(1); scanf("%d",&m); while(m--){ scanf("%d%d%d",&x,&y,&z); printf("%lld\\n",query(x,y,z)+query(y,x,z)); } } }