游戏编程精粹学习 - 一种快速的圆柱棱台相交测试算法
Posted HONT blog
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了游戏编程精粹学习 - 一种快速的圆柱棱台相交测试算法相关的知识,希望对你有一定的参考价值。
在Unity中挂载Renderer的对象可以使用OnBecameVisible/OnBecameInvisible来接收剔除事件。
但是非Renderer对象则要自己处理相交检测。
文中的方法测试结果比Unity的GeometryUtility效率要高一倍左右,且没有GC。不过只支持圆柱
下面是直接从书上C++版本转换的C#实现
using System.Collections; using System.Collections.Generic; using UnityEngine; public class Frustum { // Near and far plane distances float mNearDistance; float mFarDistance; // Precalculated normal components float mLeftRightX; float mLeftRightZ; float mTopBottomY; float mTopBottomZ; public Frustum(float focusLength, float aspect, float nearDistance, float farDistance) { // Save off near plane and far plane distances mNearDistance = nearDistance; mFarDistance = farDistance; // Precalculate side plane normal components float d = 1.0f / Mathf.Sqrt(1 * 1 + 1.0F); mLeftRightX = focusLength * d; mLeftRightZ = d; d = 1.0F / Mathf.Sqrt(focusLength * focusLength + aspect * aspect); mTopBottomY = focusLength * d; mTopBottomZ = aspect * d; } public bool CylinderVisible(Vector3 p1, Vector3 p2, float radius) { // Calculate unit vector representing cylinder`s axis var dp = p2 - p1; dp = dp.normalized; // Visit near plane first, N = (0,0,-1) var dot1 = -p1.z; var dot2 = -p2.z; // Calculate effective radius for near and far planes var effectiveRadius = radius * Mathf.Sqrt(1.0F - dp.z * dp.z); // Test endpoints against adjusted near plane var d = mNearDistance - effectiveRadius; var interior1 = (dot1 > d); var interior2 = (dot2 > d); if (!interior1) { // If neither endpoint is interior, // cylinder is not visible if (!interior2) return false; // p1 was outisde, so move it to the near plane var t = (d + p1.z) / dp.z; p1.x -= t * dp.x; p1.y -= t * dp.y; p1.z = -d; } else if (!interior2) { // p2 was outside, so move it to the near plane var t = (d + p1.z) / dp.z; p2.x = p1.x - t * dp.x; p2.y = p1.y - t * dp.y; p2.z = -d; } // Test endpoints against adjusted far plane d = mFarDistance + effectiveRadius; interior1 = (dot1 < d); interior2 = (dot2 < d); if (!interior1) { // If neither endpoint is interior, //cylinder is not visible if (!interior2) return false; // p1 was outside, so move it to the far plane var t = (d + p1.z) / (p2.z - p1.z); p1.x -= t * (p2.x - p1.x); p1.y -= t * (p2.y - p1.y); p1.z = -d; } else if (!interior2) { // p2 was outside, so move it to the far plane var t = (d + p1.z) / (p2.z - p1.z); p2.x = p1.x - t * (p2.x - p1.x); p2.y = p1.y - t * (p2.y - p1.y); p2.z = -d; } // Visit left side plane next. // The normal components have been precalculated var nx = mLeftRightX; var nz = mLeftRightZ; // Compute p1 * N and p2 * N dot1 = nx * p1.x - nz * p1.z; dot2 = nx * p2.x - nz * p2.z; // Calculate effective radius for this plane var s = nx * dp.x - nz * dp.z; effectiveRadius = -radius * Mathf.Sqrt(1.0F - s * s); // Test endpoints against adjusted plane interior1 = (dot1 > effectiveRadius); interior2 = (dot2 > effectiveRadius); if (!interior1) { // If neither endpoint is interior, // cylinder is not visible if (!interior2) return false; // p1 was outside, so move it to the plane var t = (effectiveRadius - dot1) / (dot2 - dot1); p1.x += t * (p2.x - p1.x); p1.y += t * (p2.y - p1.y); p1.z += t * (p2.z - p1.z); } else if (!interior2) { // p2 was outside, so move it to the plane var t = (effectiveRadius - dot1) / (dot2 - dot1); p2.x = p1.x + t * (p2.x - p1.x); p2.y = p1.y + t * (p2.y - p1.y); p2.z = p1.z + t * (p1.z - p1.z); } // Visit right side plane next dot1 = -nx * p1.x - nz * p1.z; dot2 = -nx * p2.x - nz * p2.z; s = -nx * dp.x - nz * dp.z; effectiveRadius = -radius * Mathf.Sqrt(1.0F - s * s); interior1 = (dot1 > effectiveRadius); interior2 = (dot2 > effectiveRadius); if (!interior1) { if (!interior2) return false; var t = (effectiveRadius - dot1) / (dot2 - dot1); p1.x += t * (p2.x - p1.x); p1.y += t * (p2.y - p1.y); p1.z += t * (p2.z - p1.z); } else if (!interior2) { var t = (effectiveRadius - dot1) / (dot2 - dot1); p2.x = p1.x + t * (p2.x - p1.x); p2.y = p1.y + t * (p2.y - p1.y); p2.z = p1.z + t * (p2.z - p1.z); } // Visit top side plane next // The normal components have been precalculated var ny = mTopBottomY; nz = mTopBottomZ; dot1 = -ny * p1.y - nz * p1.z; dot2 = -ny * p2.y - nz * p2.z; s = -ny * dp.y - nz * dp.z; effectiveRadius = -radius * Mathf.Sqrt(1.0F - s * s); interior1 = (dot1 > effectiveRadius); interior2 = (dot2 > effectiveRadius); if (!interior1) { if (!interior2) return false; var t = (effectiveRadius - dot1) / (dot2 - dot1); p1.x += t * (p2.x - p1.x); p1.y += t * (p2.y - p1.y); p1.z += t * (p2.z - p1.z); } else if (!interior2) { var t = (effectiveRadius - dot1) / (dot2 - dot1); p2.x = p1.x + t * (p2.x - p1.x); p2.y = p1.y + t * (p2.y - p1.y); p2.z = p1.z + t * (p2.z - p1.z); } // Finally, visit bottom side plane dot1 = ny * p1.y - nz * p1.z; dot2 = ny * p2.y - nz * p2.z; s = ny * dp.y - nz * dp.z; effectiveRadius = -radius * Mathf.Sqrt(1.0F - s * s); interior1 = (dot1 > effectiveRadius); interior2 = (dot2 > effectiveRadius); // At least one endpoint must be interior // or cylinder is not visible; return (interior1 | interior2); } }
测试脚本
using System.Collections; using System.Collections.Generic; using UnityEngine; public class FrustumTest : MonoBehaviour { public float cylinderRadius = 1f; public float cylinderHeight = 1f; Frustum mFrustum; bool mCylinderVisible; void OnEnable() { var a = Screen.currentResolution.height / (float)Screen.currentResolution.width; mFrustum = new Frustum(Camera.main.fieldOfView * Mathf.Deg2Rad, a, Camera.main.nearClipPlane, Camera.main.farClipPlane); } void Update() { UnityEngine.Profiling.Profiler.BeginSample("Frustum Test"); for (int i = 0; i < 1000; i++) { var worldToLocalMatrix = Camera.main.transform.worldToLocalMatrix; var p1 = -worldToLocalMatrix.MultiplyPoint3x4(transform.position + Vector3.up * cylinderHeight * 0.5f); var p2 = -worldToLocalMatrix.MultiplyPoint3x4(transform.position - Vector3.up * cylinderHeight * 0.5f); mCylinderVisible = mFrustum.CylinderVisible(p1, p2, cylinderRadius); //var planes = GeometryUtility.CalculateFrustumPlanes(Camera.main); //mCylinderVisible = GeometryUtility.TestPlanesAABB(planes, new Bounds(transform.position, cylinderHeight * Vector3.one)); } UnityEngine.Profiling.Profiler.EndSample(); } void OnDrawGizmos() { var oldColor = Gizmos.color; Gizmos.color = Color.blue; var cacheMatrix = Gizmos.matrix; Gizmos.matrix = Camera.main.transform.localToWorldMatrix; var a = Screen.currentResolution.width / (float)Screen.currentResolution.height; Gizmos.DrawFrustum(Vector3.zero, Camera.main.fieldOfView, Camera.main.farClipPlane, Camera.main.nearClipPlane, a); Gizmos.color = Color.white; Gizmos.matrix = cacheMatrix; if (mCylinderVisible) Gizmos.color = Color.red; DrawCylinder(transform.position, cylinderRadius, cylinderHeight); Gizmos.color = oldColor; } void DrawCylinder(Vector3 center, float radius, float height) { const float SEGMENT = 16f; var topCenter = center + height * 0.5f * Vector3.up; var bottomCenter = center - height * 0.5f * Vector3.up; var angle = 360 / SEGMENT; for (int i = 1; i <= SEGMENT + 1; i++) { var quat1 = Quaternion.AngleAxis(angle * (i - 1), Vector3.up); var quat2 = Quaternion.AngleAxis(angle * i, Vector3.up); var topEnd1 = quat1 * Vector3.forward * radius; var topEnd2 = quat2 * Vector3.forward * radius; topEnd1 += topCenter; topEnd2 += topCenter; var bottomEnd1 = quat1 * Vector3.forward * radius; var bottomEnd2 = quat2 * Vector3.forward * radius; bottomEnd1 += bottomCenter; bottomEnd2 += bottomCenter; Gizmos.DrawLine(topCenter, topEnd2); Gizmos.DrawLine(bottomCenter, bottomEnd2); Gizmos.DrawLine(topEnd1, topEnd2); Gizmos.DrawLine(bottomEnd1, bottomEnd2); Gizmos.DrawLine(topEnd2, bottomEnd2); } } }
以上是关于游戏编程精粹学习 - 一种快速的圆柱棱台相交测试算法的主要内容,如果未能解决你的问题,请参考以下文章