变态组合数求解方法

Posted dingxiaoqiang

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了变态组合数求解方法相关的知识,希望对你有一定的参考价值。

变态组合数C(n,m)求解:

问题:求解组合数C(n,m),即从n个相同物品中取出m个的方案数,由于结果可能非常大,对结果模10007即可。    

方案1: 暴力求解,C(n,m)=n*(n-1)*...*(n-m+1)/m!,n<=15 
方案2: 打表,C(n,m)=C(n-1,m-1)+C(n-1,m),n<=10,000 
方案3: 质因数分解,C(n,m)=n!/(m!*(n-m)!),C(n,m)=p1a1-b1-c1p2a2-b2-c2…pkak-bk-ck,n<=10,000,000 
方案4: Lucas定理,将m,n化为p进制,有:C(n,m)=C(n0,m0)*C(n1,m1)...(mod p),算一个不是很大的C(n,m)%p,p为素数,化为线性同余方程,用扩展的欧几里德定理求解,n在int范围内,修改一下可以满足long long范围内。
 
方案1:
int Combination(int n, int m)
{
    const int M = 10007;
    int ans = 1;
    for(int i=n; i>=(n-m+1); --i)
        ans *= i;
    while(m)
        ans /= m--;
    return ans % M;
}

方案2:

const int M = 10007;
const int MAXN = 1000;
int C[MAXN+1][MAXN+1];
void Initial()
{
    int i,j;
    for(i=0; i<=MAXN; ++i)
    {
        C[0][i] = 0;
        C[i][0] = 1;
    }
    for(i=1; i<=MAXN; ++i)
    {
        for(j=1; j<=MAXN; ++j)
        C[i][j] = (C[i-1][j] + C[i-1][j-1]) % M;
    }
}
 
int Combination(int n, int m)
{
    return C[n][m];
}

方案3:

//用筛法生成素数
const int MAXN = 1000000;
bool arr[MAXN+1] = {false};
vector<int> produce_prim_number()
{
    vector<int> prim;
    prim.push_back(2);
    int i,j;
    for(i=3; i*i<=MAXN; i+=2)
    {
        if(!arr[i])
        {
            prim.push_back(i);
            for(j=i*i; j<=MAXN; j+=i)
            arr[j] = true;
        }
    }
    while(i<=MAXN)
    {
        if(!arr[i])
        prim.push_back(i);
        i+=2;
    }
    return prim;
}
 
//计算n!中素因子p的指数
int Cal(int x, int p)
{
    int ans = 0;
    long long rec = p;
    while(x>=rec)
    {
        ans += x/rec;
        rec *= p;
    }
    return ans;
}
 
//计算n的k次方对M取模,二分法
int Pow(long long n, int k, int M)
{
    long long ans = 1;
    while(k)
    {
        if(k&1)
        {
            ans = (ans * n) % M;
        }
        n = (n * n) % M;
        k >>= 1;
    }
    return ans;
}
 
//计算C(n,m)
int Combination(int n, int m)
{
    const int M = 10007;
    vector<int> prim = produce_prim_number();
    long long ans = 1;
    int num;
    for(int i=0; i<prim.size() && prim[i]<=n; ++i)
    {
        num = Cal(n, prim[i]) - Cal(m, prim[i]) - Cal(n-m, prim[i]);
        ans = (ans * Pow(prim[i], num, M)) % M;
    }
    return ans;
}

方案4:

#include <stdio.h>
const int M = 10007;
int ff[M+5];  //打表,记录n!,避免重复计算
 
//求最大公因数
int gcd(int a,int b)
{
    if(b==0)
        return a;
    else
        return gcd(b,a%b);
}
 
//解线性同余方程,扩展欧几里德定理
int x,y;
void Extended_gcd(int a,int b)
{
    if(b==0)
    {
       x=1;
       y=0;
    }
    else
    {
       Extended_gcd(b,a%b);
       long t=x;
       x=y;
       y=t-(a/b)*y;
    }
}
 
//计算不大的C(n,m)
int C(int a,int b)
{
    if(b>a)
    return 0;
    b=(ff[a-b]*ff[b])%M;
    a=ff[a];
    int c=gcd(a,b);
    a/=c;
    b/=c;
    Extended_gcd(b,M);
    x=(x+M)%M;
    x=(x*a)%M;
    return x;
}
 
//Lucas定理
int Combination(int n, int m)
{
    int ans=1;
    int a,b;
    while(m||n)
    {
             a=n%M;
        b=m%M;
        n/=M;
        m/=M;
        ans=(ans*C(a,b))%M;
    }
    return ans;
}
 
int main(void)
{
    int i,m,n;
    ff[0]=1;
    for(i=1;i<=M;i++)  //预计算n!
    ff[i]=(ff[i-1]*i)%M;
     
    scanf("%d%d",&n, &m);
    printf("%d\n",func(n,m));
     
    return 0;
}

 

1
2
3
4
5
6
7
8
9
10
int Combination(int n, int m)
{
    const int M = 10007;
    int ans = 1;
    for(int i=n; i>=(n-m+1); --i)
        ans *= i;
    while(m)
        ans /= m--;
    return ans % M;
}
 

[2].[代码] 方案2 跳至 [1] [2] [3] [4]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
const int M = 10007;
const int MAXN = 1000;
int C[MAXN+1][MAXN+1];
void Initial()
{
    int i,j;
    for(i=0; i<=MAXN; ++i)
    {
        C[0][i] = 0;
        C[i][0] = 1;
    }
    for(i=1; i<=MAXN; ++i)
    {
        for(j=1; j<=MAXN; ++j)
        C[i][j] = (C[i-1][j] + C[i-1][j-1]) % M;
    }
}
 
int Combination(int n, int m)
{
    return C[n][m];
}
 

[3].[代码] 方案3 跳至 [1] [2] [3] [4]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
//用筛法生成素数
const int MAXN = 1000000;
bool arr[MAXN+1] = {false};
vector<int> produce_prim_number()
{
    vector<int> prim;
    prim.push_back(2);
    int i,j;
    for(i=3; i*i<=MAXN; i+=2)
    {
        if(!arr[i])
        {
            prim.push_back(i);
            for(j=i*i; j<=MAXN; j+=i)
            arr[j] = true;
        }
    }
    while(i<=MAXN)
    {
        if(!arr[i])
        prim.push_back(i);
        i+=2;
    }
    return prim;
}
 
//计算n!中素因子p的指数
int Cal(int x, int p)
{
    int ans = 0;
    long long rec = p;
    while(x>=rec)
    {
        ans += x/rec;
        rec *= p;
    }
    return ans;
}
 
//计算n的k次方对M取模,二分法
int Pow(long long n, int k, int M)
{
    long long ans = 1;
    while(k)
    {
        if(k&1)
        {
            ans = (ans * n) % M;
        }
        n = (n * n) % M;
        k >>= 1;
    }
    return ans;
}
 
//计算C(n,m)
int Combination(int n, int m)
{
    const int M = 10007;
    vector<int> prim = produce_prim_number();
    long long ans = 1;
    int num;
    for(int i=0; i<prim.size() && prim[i]<=n; ++i)
    {
        num = Cal(n, prim[i]) - Cal(m, prim[i]) - Cal(n-m, prim[i]);
        ans = (ans * Pow(prim[i], num, M)) % M;
    }
    return ans;
}
 

[4].[代码] 方案4 跳至 [1] [2] [3] [4]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include <stdio.h>
const int M = 10007;
int ff[M+5];  //打表,记录n!,避免重复计算
 
//求最大公因数
int gcd(int a,int b)
{
    if(b==0)
        return a;
    else
        return gcd(b,a%b);
}
 
//解线性同余方程,扩展欧几里德定理
int x,y;
void Extended_gcd(int a,int b)
{
    if(b==0)
    {
       x=1;
       y=0;
    }
    else
    {
       Extended_gcd(b,a%b);
       long t=x;
       x=y;
       y=t-(a/b)*y;
    }
}
 
//计算不大的C(n,m)
int C(int a,int b)
{
    if(b>a)
    return 0;
    b=(ff[a-b]*ff[b])%M;
    a=ff[a];
    int c=gcd(a,b);
    a/=c;
    b/=c;
    Extended_gcd(b,M);
    x=(x+M)%M;
    x=(x*a)%M;
    return x;
}
 
//Lucas定理
int Combination(int n, int m)
{
    int ans=1;
    int a,b;
    while(m||n)
    {
             a=n%M;
        b=m%M;
        n/=M;
        m/=M;
        ans=(ans*C(a,b))%M;
    }
    return ans;
}
 
int main(void)
{
    int i,m,n;
    ff[0]=1;
    for(i=1;i<=M;i++)  //预计算n!
    ff[i]=(ff[i-1]*i)%M;
     
    scanf("%d%d",&n, &m);
    printf("%d\n",func(n,m));
     
    return 0;
}

以上是关于变态组合数求解方法的主要内容,如果未能解决你的问题,请参考以下文章

组合数C(n,m)的四种求解方法

组合数处理(逆元求解)...Orz

2.方法课后作业

组合计数

数论篇7——组合数 & 卢卡斯定理(Lucas)

组合数模板