OpenCV学习代码记录—— Snake轮廓

Posted ymwh@foxmail.com

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了OpenCV学习代码记录—— Snake轮廓相关的知识,希望对你有一定的参考价值。

很久之前学习过一段时间的OpenCV,当时没有做什么笔记,但是代码都还在,这里把它贴出来做个记录。
代码放在码云上,地址在这里https://gitee.com/solym/OpenCVTest/tree/master/OpenCVTest

#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/legacy/legacy.hpp>    // cvSnakeImage

// http://blog.csdn.net/hongxingabc/article/details/51606520
//http://wiki.opencv.org.cn/index.php/Snake%E8%BD%AE%E5%BB%93%E4%BE%8B%E5%AD%90

static cv::Mat  src, src_bak;   // 原始图像及其备份

static int  thresholdness = 128;    // 阈值
// 下面的参数用于滑块的值传出
static int ialpha = 20; // alpha代表点相互靠拢的权值(0-1.0)
static int ibeta  = 20; // beta表示弯曲能量(越小越容易弯曲)(0-1.0)
static int igamma = 20; // gamma表示整体能量(0-1.0)

void on_change(int pos,void*);

int snakeContour()
{
    // 创建窗口
    cv::namedWindow("win", 0);
    // 添加四个进度条(滑块条)
    cv::createTrackbar("Thd", "win", &thresholdness, 255, on_change);
    cv::createTrackbar("alpha", "win", &ialpha, 100, on_change);
    cv::createTrackbar("beta", "win", &ibeta, 100, on_change);
    cv::createTrackbar("gamma", "win", &igamma, 100, on_change);
    
    cv::resizeWindow("win", 640, 480);
    // 调用一次on_change,以便显示出窗口
    on_change(0,NULL);

    while (true){
        if (cv::waitKey(40) == 27) {
            cv::destroyWindow("win");
            break;  // 按下ESC键就退出
        }
        // 显示图像到窗口
        cv::imshow("win", src_bak);
    }

    return 0;
}

void on_change(int,void*)
{
    // 读取原图像
    src_bak = cv::imread("../Image/sisy.jpg", 1);
    // 转换为灰度图像
    cv::cvtColor(src_bak, src, CV_BGR2GRAY);

    // 对单通道数组应用固定阈值操作。该函数的典型应用是对灰度图像进行阈值操作得到二值图像。
    // 二值化操作
    cv::threshold(src/*原始图像(单通道)*/,
        src/*目标图像(与原始图像类型一致)*/,
        thresholdness/*二值化控制阈值*/,
        255/*使用 CV_THRESH_BINARY 和 CV_THRESH_BINARY_INV 的最大值*/,
        CV_THRESH_BINARY/*阈值类型*/);
    // CV_THRESH_BINARY:如果 src(x, y)>threshold, dst(x, y) = max_value; 否则, dst(x, y) = 0;
    // CV_THRESH_BINARY_INV:如果 src(x, y)>threshold, dst(x, y) = 0; 否则, dst(x, y) = max_value.
    // CV_THRESH_TRUNC:如果 src(x, y)>threshold,dst(x, y) = max_value; 否则dst(x, y) = src(x, y).
    // CV_THRESH_TOZERO:如果src(x, y)>threshold,dst(x, y) = src(x, y); 否则 dst(x, y) = 0。
    // CV_THRESH_TOZERO_INV:如果 src(x, y)>threshold,dst(x, y) = 0; 否则dst(x, y) = src(x, y).
    
    std::vector<std::vector<cv::Point> > contours;

    // http://www.360doc.com/content/12/1028/14/6408986_244247418.shtml
    // 寻找初始化轮廓
    cv::findContours(src/*输入图像(2值单通道图像)*/,
        contours/*传出检测的轮廓点数组*/,
        CV_RETR_EXTERNAL/*轮廓检测模式*/,
        CV_CHAIN_APPROX_SIMPLE/*轮廓近似方式*/,
        cv::Point(0, 0)/*轮廓点偏移量*/);

    if (contours.empty()) {
        return; //没有检测到轮廓
    }

    // 绘制轮廓线(绘制到备份的图像上)
    cv::drawContours(src_bak, contours, -1, cv::Scalar(0, 0, 255), 2, 8);

    {
    // 获取alpha、beta、gamma三个值
        float alpha = ialpha / 100.0f;
        float beta = ibeta / 100.0f;
        float gamma = igamma / 100.0f;

        // 改变轮廓位置使得它的能量最小
        // 因为没有C++的接口,所以这里使用C的接口
        IplImage ipl_src = IplImage(src);
        
        // 每个点用于搜索最小值的邻域尺寸,两个 win.width 和 win.height 都必须是奇数
        CvSize size;
        size.width = 3; size.height = 3;
        // 终止条件
        CvTermCriteria criteria;
        criteria.type = CV_TERMCRIT_ITER;
        criteria.max_iter = 1000;
        criteria.epsilon = 0.1;
        // 梯度符号。如果非零,函数为每一个图像象素计算梯度幅值,且把它当成能量场,否则考虑输入图像本身。
        int calc_gradient = 1;

        std::vector<CvPoint> point_arr; // 用于获取一个轮廓环的特征点
        for (int nline = 0; nline < contours.size(); ++nline) {
            // 当前轮廓线点数
            int point_count = contours[nline].size();
            if (point_count > 2) {  // 低于3个点的时候,会出错
                point_arr.resize(point_count);
            } else {
                continue;
            }
            // 拷贝特征点
            for (int npt = 0; npt < contours[nline].size(); ++npt) {
                point_arr[npt] = contours[nline][npt];
            }
            // 执行改变轮廓位置使得它的能量最小
            cvSnakeImage(&ipl_src/*输入图像或外部能量域*/,
                point_arr.data()/*传入传出轮廓点*/,
                point_count/*传入轮廓点数组大小*/,
                &alpha/*连续性能量的权 Weight[s],单个浮点数或长度为 length 的浮点数数组,每个轮廓点有一个权*/,
                &beta/*曲率能量的权 Weight[s],与 alpha 类似*/,
                &gamma/*图像能量的权 Weight[s],与 alpha 类似*/,
                CV_VALUE/*前面三个参数的不同使用方法*/,
                /*CV_VALUE 表示每个 alpha, beta, gamma 都是指向为所有点所用的一个单独数值;
                CV_ARRAY 表示每个 alpha, beta, gamma 是一个指向系数数组的指针,snake 上面各点的系数都不相同。
                因此,各个系数数组必须与轮廓具有同样的大小。所有数组必须与轮廓具有同样大小*/
                size, criteria, calc_gradient);

            // 显示曲线(蓝色)
            for (int prev = 0; prev < point_count; ++prev) {
                int next = (prev + 1) % point_count;
                // 绘线,蓝色
                cv::line(src_bak, point_arr[prev], point_arr[next], cv::Scalar(255, 0, 0), 2, 8, 0);
            }
        }
    }
}

以上是关于OpenCV学习代码记录—— Snake轮廓的主要内容,如果未能解决你的问题,请参考以下文章

OpenCV学习代码记录——轮廓(contour)检测

OpenCV示例学习笔记-contours2.cpp-通过findContours 函数实现轮廓提取

图像分割之活动轮廓模型之Snake模型简介

蛇算法 - opencv 活动轮廓 - 效果不佳

opencv学习-物体轮廓外接矩形的绘制

opencv学习-轮廓发现