Bzoj2141: 排队

Posted Cyhlnj

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Bzoj2141: 排队相关的知识,希望对你有一定的参考价值。

题面

传送门

Sol

树状数组套线段树模板题

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
const int _(2e4 + 1);
typedef long long ll;

IL int Input(){
    RG int x = 0, z = 1; RG char c = getchar();
    for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
    for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
    return x * z;
}

int h[_], n, num, rt[_], o[_], len;
struct Segment{
    int ls, rs, sz;
} T[_ * 200];
ll ans;

IL void Modify(RG int &x, RG int l, RG int r, RG int p, RG int v){
    if(!x) x = ++num; T[x].sz += v;
    if(l == r) return;
    RG int mid = (l + r) >> 1;
    if(p <= mid) Modify(T[x].ls, l, mid, p, v);
    else Modify(T[x].rs, mid + 1, r, p, v);
}

IL void Add(RG int x, RG int v, RG int d){
    for(; x <= n; x += x & -x) Modify(rt[x], 1, len, v, d);
}

IL int QuerySum(RG int x, RG int l, RG int r, RG int ql, RG int qr){
    if(!x) return 0;
    if(ql <= l && qr >= r) return T[x].sz;
    RG int mid = (l + r) >> 1, ret = 0;
    if(ql <= mid) ret = QuerySum(T[x].ls, l, mid, ql, qr);
    if(qr > mid) ret += QuerySum(T[x].rs, mid + 1, r, ql, qr);
    return ret;
}

IL int Sum(RG int x, RG int l, RG int r){
    RG int ret = 0;
    if(l > r) return 0;
    for(; x; x -= x & -x) ret += QuerySum(rt[x], 1, len, l, r);
    return ret;
}

int main(RG int argc, RG char* argv[]){
    n = Input();
    for(RG int i = 1; i <= n; ++i) o[++len] = h[i] = Input();
    sort(o + 1, o + len + 1), len = unique(o + 1, o + len + 1) - o - 1;
    for(RG int i = 1; i <= n; ++i){
        h[i] = lower_bound(o + 1, o + len + 1, h[i]) - o;
        ans += Sum(i, h[i] + 1, len), Add(i, h[i], 1);
    }
    printf("%lld\n", ans);
    for(RG int m = Input(); m; --m){
        RG int x = Input(), y = Input();
        if(x > y) swap(x, y);
        Add(x, h[x], -1), Add(y, h[y], -1);
        ans -= Sum(x, h[x] + 1, len) + Sum(y, h[y] + 1, len);
        ans -= Sum(n, 1, h[x] - 1) - Sum(x - 1, 1, h[x] - 1);
        ans -= Sum(n, 1, h[y] - 1) - Sum(y - 1, 1, h[y] - 1);
        if(h[x] > h[y]) --ans;
        swap(h[x], h[y]);
        if(h[x] > h[y]) ++ans;
        ans += Sum(x, h[x] + 1, len) + Sum(y, h[y] + 1, len);
        ans += Sum(n, 1, h[x] - 1) - Sum(x - 1, 1, h[x] - 1);
        ans += Sum(n, 1, h[y] - 1) - Sum(y - 1, 1, h[y] - 1);
        Add(x, h[x], 1), Add(y, h[y], 1);
        printf("%lld\n", ans);
    }
    return 0;
}

以上是关于Bzoj2141: 排队的主要内容,如果未能解决你的问题,请参考以下文章

Bzoj 2141: 排队 分块,逆序对,树状数组

BZOJ 2141 排队(块套树,分块,树状数组)BZOJ修复工程

BZOJ 2141 排队(块套树,分块,树状数组)BZOJ修复工程

bzoj 2141: 排队

[BZOJ2141]排队

BZOJ 2141: 排队 CDQ分治+bit