题意
有一个长度为\(n\) 的序列,有三个操作:
\(I \ \ a\ b\ c\ :\)表示将\([a,b]\)这一段区间的元素集体增加\(c\);
\(R \ \ a\ b\ :\)表示将\([a,b]\)区间内所有元素变成相反数;
\(Q \ \ a\ b\ c\ :\)表示询问\([a,b]\)这一段区间中选择\(c\) 个数相乘的所有方案的和\(mod19940417\)的值。
对于100%的数据,\(n≤50000,q≤50000\),初始序列的元素的绝对值\(≤10^9\),保证\([a,b]\)是一个合法区间,\(I\)操作中\(|c|\le10^9\),\(Q\)操作中\(1≤c≤min?(b?a+1,20)\)
sol
维护的信息就是在每一个区间内选出\(0...20\)个数的乘积之和吧。
向上合并就是一个类似卷积的形式,直接\(O(c^2)\)转移即可。
区间取反简单一些,就是把所有\(i\)为奇数的信息取反即可。
加一个数相对来说复杂一点,可以把原来的式子大力展开,得到了一个组合数乘\(x\)的若干次幂之和的形式。
记得处理两种标记合并的问题。
code
#include<cstdio>
#include<algorithm>
using namespace std;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 5e4+5;
const int mod = 19940417;
struct Data{int f[21];}t[N<<2];
int n,m,C[N][21],tag[N<<2],rev[N<<2];
inline Data operator + (Data a,Data b)
{
Data c;
for (int i=0;i<=20;++i)
{
c.f[i]=0;
for (int j=0;j<=i;++j)
(c.f[i]+=1ll*a.f[j]*b.f[i-j]%mod)%=mod;
}
return c;
}
void build(int x,int l,int r)
{
if (l==r) {t[x].f[0]=1;t[x].f[1]=(gi()%mod+mod)%mod;return;}
int mid=l+r>>1;
build(x<<1,l,mid);build(x<<1|1,mid+1,r);
t[x]=t[x<<1]+t[x<<1|1];
}
inline void cover(int x,int l,int r,int v)
{
Data a;a.f[0]=1;
for (int i=1;i<=20;++i)
{
int w=1;a.f[i]=0;
for (int j=i;~j;--j,w=1ll*w*v%mod)
(a.f[i]+=1ll*t[x].f[j]*C[r-l+1-j][i-j]%mod*w%mod)%=mod;
}
t[x]=a;(tag[x]+=v)%=mod;
}
inline void reverse(int x)
{
for (int i=1;i<=20;i+=2) t[x].f[i]=mod-t[x].f[i];
rev[x]^=1;tag[x]=mod-tag[x];
}
inline void pushdown(int x,int l,int r)
{
if (rev[x])
{
reverse(x<<1);reverse(x<<1|1);
rev[x]^=1;
}
if (tag[x])
{
int mid=l+r>>1;
cover(x<<1,l,mid,tag[x]);cover(x<<1|1,mid+1,r,tag[x]);
tag[x]=0;
}
}
void modify_tag(int x,int l,int r,int ql,int qr,int v)
{
if (l>=ql&&r<=qr) {cover(x,l,r,v);return;}
pushdown(x,l,r);int mid=l+r>>1;
if (ql<=mid) modify_tag(x<<1,l,mid,ql,qr,v);
if (qr>mid) modify_tag(x<<1|1,mid+1,r,ql,qr,v);
t[x]=t[x<<1]+t[x<<1|1];
}
void modify_rev(int x,int l,int r,int ql,int qr)
{
if (l>=ql&&r<=qr) {reverse(x);return;}
pushdown(x,l,r);int mid=l+r>>1;
if (ql<=mid) modify_rev(x<<1,l,mid,ql,qr);
if (qr>mid) modify_rev(x<<1|1,mid+1,r,ql,qr);
t[x]=t[x<<1]+t[x<<1|1];
}
Data query(int x,int l,int r,int ql,int qr)
{
if (l>=ql&&r<=qr) return t[x];
pushdown(x,l,r);int mid=l+r>>1;
if (qr<=mid) return query(x<<1,l,mid,ql,qr);
if (ql>mid) return query(x<<1|1,mid+1,r,ql,qr);
return query(x<<1,l,mid,ql,qr)+query(x<<1|1,mid+1,r,ql,qr);
}
int main()
{
n=gi();m=gi();C[0][0]=1;
for (int i=1;i<=n;++i)
{
C[i][0]=1;
for (int j=1;j<=min(i,20);++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
}
build(1,1,n);
while (m--)
{
char ch=getchar();
while (ch!='I'&&ch!='R'&&ch!='Q') ch=getchar();
int l=gi(),r=gi(),c;if (ch!='R') c=(gi()%mod+mod)%mod;
if (ch=='I') modify_tag(1,1,n,l,r,c);
if (ch=='R') modify_rev(1,1,n,l,r);
if (ch=='Q') printf("%d\n",query(1,1,n,l,r).f[c]);
}
return 0;
}