斐波那契数列指的是这样一个数列: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368。
可以观察到,从第3个数开始,每个数的值都等于前连个数之和。
同时,定义f(0)=0, f(1)=1.
则 f(2)=f(1)+f(0)=1;
f(3)=f(2)+f(1)=2;
... 依次类推,
f(n)=f(n-1)+f(n-2)
该问题实质是斐波那契数列求和,递推公式为 f(n)=f(n-1)+f(n-2);
可以考虑,小青蛙每一步跳跃只有两种选择:一是再跳一级阶梯到达第 i 级阶梯,此时小青蛙处于第 i-1 级阶梯;或者再跳两级阶梯到达第 i 级阶梯,此时小青蛙处于第 i-2 级阶梯。
于是,i 级阶梯的跳法总和依赖于前 i-1 级阶梯的跳法总数f(i-1)和前 i-2 级阶梯的跳法总数f(i-2)。因为只有两种可能性,所以,f(i)=f(i-1)+f(i-2);
依次类推,可以递归求出n级阶梯跳法之和。
public class Solution {
public int JumpFloor(int target) {
int a=1;
int b=2;
int c=0;
if(target<=0){
return 0;
}else{
if(target==1||target==2)
return target;
else{
for(int i=3;i<=target;i++){
c=a+b;
a=b;
b=c;
}
return c;
}
}
}
}
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
假设f(n)是n个台阶跳的次数。
-
f(1) = 1
-
f(2) 会有两个跳得方式,一次1阶或者2阶,这回归到了问题f(1),f(2) = f(2-1) + f(2-2)
-
f(3) 会有三种跳得方式,1阶、2阶、3阶,那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3).因此结论是
f(3) = f(3-1)+f(3-2)+f(3-3) -
f(n)时,会有n中跳的方式,1阶、2阶...n阶,得出结论:
f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1) == f(n) = 2*f(n-1)
所以,可以得出结论
public class Solution {
public int JumpFloorII(int target) {
int a=1;
int b=2;
if(target<=0){
return 0;
}else{
if(target==1)
return target;
else{
for(int i=2;i<=target;i++){
b=2*a;
a=b;
}
return b;
}
}
}
}