spark streaming是建立在spark core之上的,也就说spark streaming任务最终执行还是依赖于RDD模型。在转化成最终的RDD模型执行前,spark streaming主要需要处理以下几个问题:
a,每个batch的RDD是怎么根据用户的代码生成的(对应JobGenerator)?
b,数据是怎么从外部接收的(对应receiver)?
c,每个batch的任务是怎么触发的(对应JobGenerator)?
d,怎么保证spark streaming任务的可靠性?
本文主要针对a,b,c这三个问题做深入分析。
1,DStream拓扑结构
当写spark批处理应用时,通过RDD形成了DAG的计算拓扑。类似的,在spark streaming中通过DStream形成了计算模板的拓扑。当定义好DStream的计算模板以后,每个batch就可以基于该模板生成RDD的计算拓扑。以example中streaming的NetworkWordCount为例:
val lines = ssc.socketTextStream(args(0), args(1).toInt, StorageLevel.MEMORY_AND_DISK_SER)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
生成的DStream拓扑结构如下:
以上拓扑结构图中的节点主要分为三类:输入流,一般DStream计算节点,输出流节点。
2,DStream处理的整体流程
当StreamingContext启动以后,streaming任务的整体流程逻辑图如下:
核心要点如下:
1,ReceiverTracker(位于driver端),主要负责对位于executor端的Receiver进行控制。包括通过提交任务启动Receiver,接收Receiver端Block相关的信息汇报等。
2,JobGenerator(位于driver端),主要作用是通过一个定时器定期生成任务。生成任务主要包括四个步骤:
a,根据receiver接收并且上报给ReceiverTracker的信息,生成当前batch的RDD输入数据。
b,根据用户定义的DStream拓扑结构模板生成当前batch的Jobs
c,将步骤b中生成的Job分装成Jobset,交由JobHandler去执行。在Job执行过程中,将有可能触发底层RDD任务提交和计算。
d,通过检查点,保存当前JobGraph的状态。
3,ReceiverSupervisor(位于executor端),主要负责管理executor段的Reciver,包括启动Receiver,保存Reciever接收的数据以及发送相关消息给Driver端的ReceiverTracker。
接下来,将解释一下开头提出的问题
Q1,每个batch的RDD是怎么根据用户的代码生成的(对应JobGenerator)?
首先,应用通过DStream形成了RDD生成的模板。其次,在JobGenerator定时按照batchTime生成的任务的时候,会从输出流开始(ForEachDStream注册),递归地调用DStream中getOrCompute方法,封装成Job。在Job中就包含了每个batch之间的RDD DAG。
Q2,数据是怎么从外部接收的(对应receiver)?
首先,接收数据实在executor端进行的。其次,Receiver持续不断的接受数据,并且将数据通过ReceiverSupervisor借助RecevierHanlder进行保存,最终将数据按block保存,并且向Driver汇报接受的数据信息。
Q3,每个batch的任务是怎么触发的(对应JobGenerator)?
在Driver端的JobGenerator有一个定时器,每隔batchTime时间定期出发一次任务生成。具体要做的事情已阐述。
Q4,怎么保证spark streaming任务的可靠性?
保证可靠性涉及到driver和executor端,在本文中,可以看到的一点是在任务生成以后,会通过检查点方式保存当前JobGraph的状态。其他待后续总结。