深度学习之 rnn 台词生成

Posted htoooth

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度学习之 rnn 台词生成相关的知识,希望对你有一定的参考价值。

深度学习之 rnn 台词生成

写一个台词生成的程序,用 pytorch 写的。

import os
def load_data(path):
    with open(path, 'r', encoding="utf-8") as f:
        data = f.read()
    return data

text = load_data('./moes_tavern_lines.txt')[81:]

train_count = int(len(text) * 0.6)
val_count = int(len(text) * 0.2)
test_count = int(len(text) * 0.2)

train_text = text[:train_count]
val_text = text[train_count: train_count + val_count]
test_text = text[train_count + val_count:]

view_sentence_range = (0, 10)

import numpy as np

print("data set State")
print("Roughly the number of unique words: {}".format(len({word: None for word in text.split()})))
scenes = text.split("\n\n")
print("number of scenes: {}".format(len(scenes)))
sentence_count_scene = [scene.count('\n') for scene in scenes]
print('Average number for sentences in each scene: {}'.format(np.average(sentence_count_scene)))

sentences = [sentence for scene in scenes for sentence in scene.split('\n')]
print("Number for lines: {}".format(len(sentences)))
word_count_sentence = [len(sentence.split()) for sentence in sentences]
print('Average number for words in each line: {}'.format(np.average(word_count_sentence)))

print()
print('The sentences {} to {}:'.format(*view_sentence_range))
print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]]))

def token_lookup():
    return {
        '.': '||Period||',
        ',': '||Comma||',
        '"': '||Quotation_Mark||',
        ';': '||Semicolon||',
        '!': '||Exclamation_mark||',
        '?': '||Question_mark||',
        '(': '||Left_Parentheses||',
        ')': '||Right_Parentheses||',
        '--': '||Dash||',
        '\n': '||Return||',
    }

import os
import torch

class Dictionary(object):
    def __init__(self):
        self.word2idx = {}
        self.idx2word = []

    def add_word(self, word):
        if word not in self.word2idx:
            self.idx2word.append(word)
            self.word2idx[word] = len(self.idx2word) - 1
        return self.word2idx[word]

    def __len__(self):
        return len(self.idx2word)


class Corpus(object):
    def __init__(self, train, val, test):
        self.dictionary = Dictionary()
        self.train = self.tokenize(train)
        self.valid = self.tokenize(val)
        self.test = self.tokenize(test)

    def tokenize(self, text):
        words = text.split()
        tokens = len(words)
        token = 0
        ids = torch.LongTensor(tokens)
        for i, word in enumerate(words):
            self.dictionary.add_word(word)
            ids[i] = self.dictionary.word2idx[word]

        return ids
        

import numpy as np
import torch

i_dict = token_lookup()

def create_data(text):
    vocab_to_int = {}
    int_to_vocab = {}
       
    new_text = ""
    for t in text:
        if t in token_lookup():
            new_text += " {} ".format(i_dict[t])
        else:
            new_text += t
            
    return new_text

import torch
import torch.nn as nn
from torch.autograd import Variable

# 模型 RNN
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, n_layers=1):
        super(RNN, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.n_layers = n_layers
        
        self.drop = nn.Dropout(0.5)
        
        self.encoder = nn.Embedding(input_size, hidden_size)
        
        self.gru = nn.GRU(hidden_size, hidden_size, n_layers)
        
        self.decoder = nn.Linear(hidden_size, output_size)
        
    def forward(self, input, hidden):
        input = self.encoder(input)
        output, hidden = self.gru(input, hidden)
        output = self.drop(output)
        decoded = self.decoder(output.view(output.size(0) * output.size(1), output.size(2)))
        return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden
    
    def init_hidden(self, batch_size):
        return Variable(torch.zeros(self.n_layers, batch_size, self.hidden_size))

# batch 化
def batchify(data, bsz):
    # Work out how cleanly we can divide the dataset into bsz parts.
    nbatch = data.size(0) // bsz
    # Trim off any extra elements that wouldn't cleanly fit (remainders).
    data = data.narrow(0, 0, nbatch * bsz)
    # Evenly divide the data across the bsz batches.
    data = data.view(bsz, -1).t().contiguous()
   
    return data

n_epochs = 3500
print_every = 500
plot_every = 10
hidden_size = 100
n_layers = 1
lr = 0.005
chunk_len = 10
batch_size = 20
val_batch_size = 10

# 数据生成
train_data = create_data(train_text)
test_data = create_data(test_text)
val_data = create_data(val_text)

corpus = Corpus(train_data, val_data, test_data)

train_source = batchify(corpus.train, batch_size)
test_source = batchify(corpus.test, batch_size)
val_source = batchify(corpus.valid, batch_size)

n_tokens = len(corpus.dictionary)

# 模型
model = RNN(n_tokens, hidden_size, n_tokens, n_layers)

# 优化器
optimizer = torch.optim.Adam(model.parameters(), lr=lr)

# 损失函数
criterion = nn.CrossEntropyLoss()

# 
def get_batch(source, i , evaluation = False):
    seq_len = min(chunk_len, len(source) - 1 - i)
    data = Variable(source[i:i+seq_len], volatile=evaluation)
    target = Variable(source[i+1:i+1+seq_len].view(-1))
    return data,target

def repackage_hidden(h):
    if type(h) == Variable:
        return Variable(h.data)
    else:
        return tuple(repackage_hidden(v) for v in h)

# 训练
def train():
    model.train()
    total_loss = 0
    
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(batch_size)
    for batch, i in enumerate(range(0, train_source.size(0) - 1, chunk_len)):
        data, targets = get_batch(train_source, i)
        
        hidden = repackage_hidden(hidden)
        optimizer.zero_grad()
        output, hidden = model(data, hidden)
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()
        optimizer.step()
        
        total_loss += loss.data
    
        if batch % 10 == 0:
            print('epoch {}/{} {}'.format(epoch, batch, loss.data))

# 验证       
def evaluate(data_source):
    model.eval()
    total_loss = 0
    
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(batch_size)
    for i in range(0, data_source.size(0) - 1, chunk_len):
        data, targets = get_batch(data_source, i, evaluation=True)
        
        output, hidden = model(data, hidden)
        output_flat = output.view(-1, ntokens)
        total_loss += len(data) * criterion(output_flat, targets).data
        hidden = repackage_hidden(hidden)
        
    return total_loss[0] / len(data_source)
    

import time, math

# 开始训练
for epoch in range(1, n_epochs + 1):
    train()
    val_loss = evaluate(val_source)
    print("epoch {} {} {}".format(epoch, val_loss, math.exp(val_loss)))

# 生成一段短语
def gen(n_words):
    model.eval()
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(1)

    input = Variable(torch.rand(1, 1).mul(ntokens).long(), volatile=True)
    
    words = []
    for i in range(n_words):
        output, hidden = model(input, hidden)
        word_weights = output.squeeze().data.exp().cpu()
        word_idx = torch.multinomial(word_weights, 1)[0]
        input.data.fill_(word_idx)
        
        word = corpus.dictionary.idx2word[word_idx]
        
        isOk = False
        for w,s in i_dict.items():
            if s == word:
                isOk = True
                words.append(w)
                break
        
        if not isOk:
            words.append(word)
        
    return words

words = gen(1000)
print(" ".join(words))

总结

rnn 总是参数不怎么对,耐心调整即可。

以上是关于深度学习之 rnn 台词生成的主要内容,如果未能解决你的问题,请参考以下文章

备战数学建模49-深度学习之长短期记忆网络LSTM(RNN)(攻坚战14)

备战数学建模49-深度学习之长短期记忆网络LSTM(RNN)(攻坚战14)

深度学习之seq2seq模型以及Attention机制

深度学习之TensorFlow——基本使用

深度学习之TCN网络

深度学习之GRU网络